Lecture 5: Recurrent Neural Networks

Nima Mohajerin
University of Waterloo

WAVE Lab
nima.mohajerin@uwaterloo.ca

July 4, 2017

1/25

Overview

© Recap

© RNN Architectures for Learning Long Term Dependencies
© Other RNN Architectures

@ System Identification with RNNs

2/25

@ RNNs deal with sequential information.

@ RNNs are dynamic systems. Frequently their dynamic is
represented via state-space equations.

3/25

ME 780
Recap

A simple RNN

@ A simple RNN in discrete-time domain:

x(k) = f(Ax(k — 1) + Bu(k) + by)

y(k) = g(x(k) +by)

x(k) € R® : RNN state vector, no. of states = no. of hidden neuron
y(k) € R" : RNN output vector, no. of output neurons = n

u(k) € R™ : Input vector to RNN (Independent input)

A € R® x R® : State feedback weight matrix
B € R° x R™ : Input weight matrix

b, € R® : Bias term

C € R"” x R® : State to output weight matrix
b, € R" : Output bias

4/25

ME 780
Recap

Back Propagation Through Time

u(l) u(2)

x(0) x(1)

u(k) u(k +1) u(T)

x(2) x(k—1) x(k+1) x(T—1) x(T)

y() ¥(2) y(k)' ylk+1) y(T)

One data sample:
o Input: U= [u(ko+1) u(kp+2) ... ulko+T)].
o output: Y = [ye(ko+1) ye(ko+2) ... yelko+ T)].
@ SSE cost (per sample):

T T n

L=05e(kotk)Te(kotk) =053 > (yilkotk)—yei(kotk))*
k=1 k=1 i=1

@ Batch cost (batch size = D):
L=05%0 3/ edlko + k) Teq(ko + k)

5/25

ME 780
Recap

Gradients

To do a derivative-based optimization, we need the gradient of L:

5o Z(k a2t - z (ko + 1) e)
8;22) - 8(CX(aka),-j+ 2 g (Cx(h) +b,) = Cagif;)g/(Cx(k) +by)
agi,f-) B 8§£§)f'("(k))’ v(k) = Ax(k — 1) + Bu(k) + by
S
agi:_) _ g::_x(k —1)+ Aa"(gal;l) - Xj(k(:)— 1) +,\<9><((;<an1)
- J4sx1

6/25

ME 780
RNN Architectures for Learning Long Term Dependencies

Section 2

RNN Architectures for Learning Long Term

Dependencies

7/25

ME 780
RNN Architectures for Learning Long Term Dependencies

Gated Architectures

g(x) =x©® o(Ax +b)

©® : element-wise multiplicaiton
x € R"

g(x) € R”

AcR"xR"

8/25

ME 780
RNN Architectures for Learning Long Term Dependencies

Preserve Information with Gated Architectures

o = L?TO‘T?T
U U

x

@ The idea is that if a neuron has a self-feedback with weight
equal to one, the information will retain for an infinite amount
of time when unfolded.

@ Some information should decay, some should not be stored.

o With a gate the intention is to control the self-feedback
weight.

9/25

ME 780
RNN Architectures for Learning Long Term Dependencies

Gated Recurrent Unit

yu(k—1)

T

yr(k —1)

u(k)

10/25

ME 780
RNN Architectures for Learning Long Term Dependencies

Long Short Term Memory Cell

u(k) Oulput gale

gi(k) =0 (Wiu(k) + W?yn(k — 1) + Wic(k — 1) + b;)
gr(k) =0 (Wru(k) +Weyn(k — 1) + Wie(k — 1) + by)
go(k) =0 (Wou(k) +Woyn(k — 1) + We(k — 1) + bo)
c(k) =gi(k) ® f(Weu(k) + Weyn(k — 1)) +g(k) © c(k — 1)
m(k) =c(k) © go(k)
yn(k) =h(W,m(k — 1) + b,). 1125

ME 780
RNN Architectures for Learning Long Term Dependencies

Learning Long-Term Dependencies

@ One way to avoid gradient exploding is to clip the gradient:
gv

el

@ One way to address vanishing gradient is to use a regularizer
that maintains the magnitude of the gradient vector (pascanu et

Vol ax(k)
Q- Z (H (k) ax(k_T)” B 1)
P [Vx(r Ll

if gl > v, g «

al. 2013):
2

12/25

ME 780
Other RNN Architectures

Section 3

Other RNN Architectures

13/25

ME 780
Other RNN Architectures

RNNs as Associative Memories

@ An RNN is a nonlinear chaotic system.
@ It can have many attractors in its phase space.

@ Hopfield (1985) model is the most popular one. It is a fully
connected recurrent model where the feedback weight matrix
is symmetric and has diagonal elements equal to zero.

@ Hopfield model is stable in a Lyapunov sense if the output
neurons are updated one at a time. (Refer to Du KL, Swamy MNS (2006)

Neural networks in a softcomputing framework doe further discussion)

14/25

ME 780
Other RNN Architectures

RNNs as Associative Memories

G SRR
s SRR
R I
el S 1l W
""“‘-““‘*‘:‘Q“:‘\“‘“ﬂ\\\“‘x‘\‘o’#«"ﬁ"”: A O

a5 e N 4

SR SRR

SRR N SRR

R N\, N % i -

SNl 5 v i) R

e liylimiin, S e

Sl e s i
15 v\\‘\«;.ty.',,',:',,ylll%ww,' 4 3
2

i
zzy,q’,ﬁ';:f’,’,‘/ﬂ
25 Content #13 !
Content #2

3
W Content #1 Content #3

Content #5
Content #4

e btjypil
it
]

R

W

o
N

W
SRR \\\\\\\\ g

-

V)

R

/ S
Rt
\“;,‘:’.;.'4, Content #9
W
R
&

Content #8

Content #6

15/25

ME 780
Othe
r RN
N Architectur
es

RNN
s as A
ssociative Me
morie
S

S
SRS
gagtf*%gsq%""‘
“‘:::“““\“““‘"
«,‘,'-t“"‘:‘ S
e 3“3“‘““‘ 4
S XXX
SIS
W.:.w‘:&
XA
K55

s ““ |

Slet et et SIS
XS ps et et iunt
X pe%s! \\
SSSlesetnissiietiens AMNAANY
S S S S SO S SR
esesiu
NRRRRARNY
9595055 TR
S S SO SIS WY

Sestesss
S

1

7

977

i 7Z

I
I

’//Zf : 7 ’,,’ff =,

S
SRS

X
s
50
XX

S

%
5
55

XX

0
SO

o

KKK
XS

“’:’:“

R

5
S
&"

: o
X
S5
S5
““ 5
&S

<X
K
S
"""""

‘Q
an

X

v

‘““'
s

93

5K
S5
S
S

o

o‘:‘"‘
S
S5

S
S
S
o“‘

X
R
““
XX
S
s 55
¢““

S
S
XS ““
“‘ %% So%
S
&“:
S,

XX
X

XX

XX
je
XX

16/25

ME 780
Other RNN Architectures

Deep RNNs

x(k)

x, (k) x, (k)
u(k) y(&) u(k)

x,(k) x, (k)
u(k) y(k)

17/25

ME 780
Other RNN Architectures

Deep RNNs

We can generalize this idea and create a connection matrix:

— /M
— o~ o *5’
@ @] =
& & & 3
= - — o
E E E o
Cll cl2 013 Cl4 From input]
C _ 021 022 023 024 From layer 1]
C3l C32 C33 C34 From layer 2]
C4l C42 C43 C44 From Iayer3]
) _J _J

18/25

ME 780
Other RNN Architectures

Deep RNNs

Example:
(to L1) (toL2) (to L3) (to output)
1 0 1 0 (from input)
C= 1 0 1 1 (from L1)
1 0 1 0 (from L2)
0 1 1 1 (from L3)

x; (k) =y, (k)

19/25

ME 780
Other RNN Architectures

Reservoir Computing

@ One approach to cope with the difficulty of training RNNs.

@ The idea is to use a very large RNN, as a reservoir and use it
to transform the input.

@ The transformed input by the RNN is then linearly combined
to form the output.

@ The linear weights are trained while the reservoir (RNN) is
fixed.

@ Echo State Networks (continuous output neurons), Liquid
State Machines (spiking binary neurons)

20/25

ME 780
Other RNN Architectures

Reservoir Computing

@ How to set the reservoir weights?

@ Set weights in such a way that the RNN is at the edge of
stability: set the eigenvalues of the state Jacobian close to

one. - 8x(k)
= ox(k—1)

e Echo State Networks (continuous output neurons), Liquid
State Machines (spiking binary neurons)

J(K)

21/25

ME 780
System Identification with RNNs

Section 4

System ldentification with RNNs

22/25

ME 780
System Identification with RNNs

Reconstructing the System States

@ We have a set of observations, i.e., measurements of a
dynamic system input and output (states).

@ We want to learn the system dynamics

@ RNNs are universal approximators for dynamic systems

(K. Funahashi and Y. Nakamura, 1993)

e Delay embedding theorem (Taken's theorem) States that a
chaotic dynamical system can be reconstructed from a
sequence of observations of the system.

@ It leads to Auto-Regressive with eXogenous (ARX) models.

23/25

ME 780
System Identification with RNNs

Nonlinear Auto-Regressive with eXogenous Inputs

y(k) = F(u(k),u(k —1),...,u(k — dx),y(k = 1),...,y(k — d))).

@ F can be constructed using a neural network. Typically an
MLP is used.

24/25

ME 780
System Identification with RNNs

Teacher Forcing (Parallel Training)

@ Is mainly used in NARX architectures.

@ Substitute the past network predictions with the targets.
y(k) = F(u(k),u(k—1),...,u(k—dy),ye(k—=1),...,y:(k—d,)).
o Converts the RNN to a FFNN (Single-step prediction).

yelb—=7) ye(k—1)

ulk — 1) u(k — 1,)

y(k)
FFNN —o

25 /25

	Recap
	RNN Architectures for Learning Long Term Dependencies
	Other RNN Architectures
	System Identification with RNNs

