
ME 780

Lecture 7: Practical Considerations For Training
Deep Models

Ali Harakeh

University of Waterloo

WAVE Lab
ali.harakeh@uwaterloo.ca

July 18, 2017

1/44



ME 780

Overview

1 Introduction

2 Determining The Goals Of The System

3 Default Baseline Models

4 The Design Process

5 Hyperparameter Selection

6 Course Conclusion

2/44



ME 780
Introduction

Section 1

Introduction

3/44



ME 780
Introduction

Introduction

Successfully applying deep learning techniques requires more
than just a good knowledge of what algorithms exist and the
principles that explain how they work.
A good machine learning practitioner also needs to know how
to choose an algorithm for a particular application and how to
monitor and respond to feedback obtained from experiments
in order to improve a machine learning system.

4/44



ME 780
Introduction

Introduction

During our day to day development effort, we need to know
when to collect more data, increase or decrease the
capacity of our model, add or remove regularization,
improve the optimization algorithm, or simply just debug
the software implementation of the model.
Each one of the above operations is extremely time consuming
and it is very important to us that we know exactly where we
went wrong.

5/44



ME 780
Introduction

Advice From The Masters

In practice, one can usually do much better with a correct
application of a commonplace algorithm than by sloppily
applying an obscure algorithm.

6/44



ME 780
Introduction

Methodology From The Masters

Determine your goals : what error metric to use, and your
target value for this error metric. These goals and error
metrics should be driven by the problem that the application
is intended to solve.
Establish a working end-to-end pipeline: This should be
done as soon as possible, and should include the estimation of
the appropriate performance metrics.
Instrument the system well to determine bottlenecks in
performance: Diagnose which components are performing
worse than expected and whether it is due to overfitting,
underfitting, or a defect in the data or software.
Repeatedly make incremental changes: This includes
gathering new data, adjusting hyperparameters, or changing
algorithms, based on specific findings from your
instrumentation.

7/44



ME 780
Determining The Goals Of The System

Section 2

Determining The Goals Of The System

8/44



ME 780
Determining The Goals Of The System

Performance Metrics

Determining which error metric to use is the most important
first step for designing a deep learning system. This is because
your error metric will guide all your future actions.
The second step is determining the value of the error metric
to beat.
Keep in mind that for most applications, it is impossible to
achieve zero error.

9/44



ME 780
Determining The Goals Of The System

Performance Metrics

The most common reasons for this phenomenon are:
Imperfect optimization procedure.
Not enough training data.
The real data distribution is not part of the model
distribution family.

Even with infinite training data and the ability to recover the
true data distribution, there is a minimum error bound that a
system can achieve.
The less known reasons for this are:

The input features may not contain complete information
about the output variable.
The process to be estimated might be inherently stochastic.

10/44



ME 780
Determining The Goals Of The System

Performance Metrics

The question is, how can we determine what minimum
performance measure is required ?

11/44



ME 780
Determining The Goals Of The System

Performance Metrics

Academic Setting: Standard benchmarks for almost all
applications already exist.
The result to beat is the best performing published algorithm
on those benchmarks.
Keep in mind to not compare apples to oranges. Do not
compare two algorithms that have been trained with different
training data, and do not compare ensembles of networks to a
single network.

12/44



ME 780
Determining The Goals Of The System

Performance Metrics

Applications Setting: We usually have some idea of the
error rate that is necessary for an application to be
safe,cost-effective, or appealing to consumers.
In this setting, every method to get a performance boost
should be used. This includes collecting more data, model
ensembles, empirically determined thresholds, and dataset
augmentation.

13/44



ME 780
Default Baseline Models

Section 3

Default Baseline Models

14/44



ME 780
Default Baseline Models

Default Baselines

After choosing performance metrics and goals, the next step
in any practical application is to establish a reasonable
end-to-end system as soon as possible.
I will provide some recommendations for default baselines
based on my modest experience with deep networks.
Keep in mind that deep learning research progresses quickly,
so better default algorithms are likely to become available
soon after this course ends.

15/44



ME 780
Default Baseline Models

Default Baselines

You should never use a cannon to hunt a rabbit.
Depending on the complexity of your problem, you might not
want to use deep learning at all.
If your problem does not fall in the AI-Complete category,
then you will likely do well with a simple statistical model
such as linear SVMs or logistic regression.

16/44



ME 780
Default Baseline Models

Default Baselines

If your problem falls in the AI-Complete category, choose the
base architecture based on the structure of the problem.
Supervised learning problems with fixed small size input
vectors will most likely use feed forward Fully Connected
Networks.
Supervised learning problems with with input variables that
has known topological structure will most likely use feed
forward Convolutional Networks.
Supervised learning problems with input or output that are
sequences, trees, or graphs should use gated recurrent
networks such as LSTMs or GRUs.
Unsupervised learning problems should consider VAEs or
GANs.

17/44



ME 780
Default Baseline Models

Default Baselines

Image Feature Extractors: VGG-16, ResNet-101, or
Inception-V3.
Object Detection Baseline Models (2D): Faster-RCNN,
YOLO-9000, RFCNs.
Semantic Segmentation: Segnet, fully convolutional
network.

18/44



ME 780
Default Baseline Models

Default Baselines

Optimizers: ADAM, RMS-Prop. (Both with a decaying
learning rate). Apply batch norm when possible, you will
thank me later.
Regularization: Early stopping should universally be used.
Dropout is an easy regularizer to implement. Be careful to try
batch norm first, since it might remove the necessity to use
dropout.

19/44



ME 780
The Design Process

Section 4

The Design Process

20/44



ME 780
The Design Process

The Design Process

After establishing an end-to-end baseline, train and test on
the dataset at hand. Always plot the training and validation
errors.
There are three scenarios that machine learning practitioners
usually face:

The training set error remains high.
The training set error decreases, but the validation set error
remains high.
Both training and validation set errors are low.

21/44



ME 780
The Design Process

The Design Process

22/44



ME 780
The Design Process

High Training Error: Debugging

Is the optimizer code running correctly? If you
implemented the gradient functions yourself, make sure the
gradient is correct via gradient checks. Is the learning rate
correct?
Does the model have high enough capacity? Make sure
the model is able to overfit. a small portion of the dataset.
Did you train for a reasonable amount of epochs ?
If all else fails, you need to rethink your architecture.

23/44



ME 780
The Design Process

The Design Process

24/44



ME 780
The Design Process

High Validation Error: Debugging

Do you have enough training data? Collect more training
data, use dataset augmentation methods.
Are you overfitting? Employ regularization strategies.
If all else fails, you will need to rethink your architecture.

25/44



ME 780
The Design Process

What If Nothing Helps ?

There is a very pathological case that is basically unknown to
deep learning practitioners in academia.
This case is illustrated as the validation set having a different
distribution than the actual test set.
This case motivates us to rethink the design process shown
above.

26/44



ME 780
The Design Process

The Design Process

27/44



ME 780
Hyperparameter Selection

Section 5

Hyperparameter Selection

28/44



ME 780
Hyperparameter Selection

Hyperparameter Selection: Manual Tuning

Choosing hyperparameters manually requires understanding
what the hyperparameters do the exact relationship between
the hyperparameters, training error, generalization error, and
computational resources.
The primary goal of manual hyperparameter search is to
adjust the effective capacity of the model to match the
complexity of the task.

29/44



ME 780
Hyperparameter Selection

Effective Capacity

Effective Capacity is governed by three factors:
The representational capacity of the model.
The ability of the learning algorithm to successfully optimize
the cost function.
The degree to which the cost function and the training
procedure regularize the model.

Next, I will show some common hyperparameters and their
effect on the effective capacity.

30/44



ME 780
Hyperparameter Selection

Number Of Hidden Units

Number of hidden units: Increases representational capacity
when increased and hence increase effective capacity.
Increasing the number of hidden units increases both time and
memory required for essentially every operation on the model.

31/44



ME 780
Hyperparameter Selection

Convolutional Kernel Width

Convolutional kernel width: Increases the number of
parameters in the model when increased and hence increase
effective capacity.
A wider kernel results in a narrower output dimension,
reducing model capacity unless you use implicit zero padding
to reduce this effect.
Wider kernels require more memory for parameter storage and
increase runtime, but a narrower output reduces memory cost.

32/44



ME 780
Hyperparameter Selection

Implicit Padding

Implicit padding: Adding implicit zeros before convolution
keeps the representation size large. Increasing the size of the
padding increases the effective capacity of the model.
A wider kernel results in a narrower output dimension,
reducing model capacity unless you use implicit zero padding
to reduce this effect.
Implicit padding increases the size of the input and hence
increases the time and memory cost of most operations.

33/44



ME 780
Hyperparameter Selection

Weight Decay Coefficient

Weight decay coefficient: Decreasing the weight decay
coefficient frees the model parameters to become larger hence
increasing the effective capacity of the model.

34/44



ME 780
Hyperparameter Selection

Dropout Rate

Dropout rate: Dropping units less often gives the units more
opportunities to conspire with each other to fit the training
set.

35/44



ME 780
Hyperparameter Selection

Learning Rate

36/44



ME 780
Hyperparameter Selection

Learning Rate

The Learning Rate is perhaps the most important
hyperparameter. If you have time to tune only one
hyperparameter, do that for the learning rate.
The learning rate controls the effective capacity of the model
in a complex way.
The effective capacity is the highest when the learning rate is
correct.

37/44



ME 780
Hyperparameter Selection

Hyperparameter Selection: Automatic Tuning

The ideal learning algorithm just takes a dataset and outputs
a function, without requiring hand-tuning of hyperparameters.
Manual hyperparameter tuning can work very well when the
user has a good starting point, such as one determined by
others having worked on the same type of application and
architecture, or when the user has months or years of
experience in exploring hyperparameter values for neural
networks applied to similar tasks.

38/44



ME 780
Hyperparameter Selection

Hyperparameter Selection: Automatic Tuning

Automatic Hyperparameter Selection algorithms wrap
around the learning algorithm and choose its hyperparameters.
Hyperparameter optimization algorithms often have their own
hyperparameters, such as the range of values that should be
explored for each of the learning algorithm’s hyperparameters.
These however are much easier to determinate.

39/44



ME 780
Hyperparameter Selection

Grid VS Random Search

40/44



ME 780
Course Conclusion

Section 6

Course Conclusion

41/44



ME 780
Course Conclusion

What Can Deep Learning Do ?

Deep Learning Is A Black Box That Can Solve
Everything !

42/44



ME 780
Course Conclusion

What Can Deep Learning Do ?

NO!
The current state of deep learning allows us to tackle
inference tasks that can be done by humans in less than one
second.
It also allows us to tackle a set of tasks that is very hard for
human beings to perform. This set is the set of prediction
tasks.

43/44



ME 780
Course Conclusion

What Can Deep Learning Do ?

Deep learning is a set of mathematical tools, and as with any
other tool, it can be misused.
This course served as a mere introduction to deep learning.
Many very important concepts such as unsupervised learning
models, few shot, one shot, and zero shot learning, domain
adaptation, adversarial examples, and Generative models have
not been covered in this course.
Finally, you should know that there is a high probability that
whatever was discussed in this course will become obsolete in
6 months.

44/44


	Introduction
	Determining The Goals Of The System
	Default Baseline Models
	The Design Process
	Hyperparameter Selection
	Course Conclusion

