
ME 780

Lecture 6: Convolutional Neural Networks

Ali Harakeh

University of Waterloo

WAVE Lab
ali.harakeh@uwaterloo.ca

July 11, 2017

1/50



ME 780

Overview

1 Introduction

2 The Convolution Operator

3 Motivation: Why Use Convolutions

4 Convolutions In Pract1ice

5 Pooling Layers

6 Region Of Interest (ROI) Pooling

7 Example of A Convolutional Neural Network: VGG16

8 Conclusion

2/50



ME 780
Introduction

Section 1

Introduction

3/50



ME 780
Introduction

Introduction

Convolutional Neural Networks (ConvNets) are a specialized
kind of neural networks for processing data that has a known
grid like topology.
Example of such data can be 1-D time series data sampled at
regular intervals, or 2-D images.
As the name suggests, these networks employ the
mathematical convolution operator.
Convolutions are a special kind of linear operators that an
be used instead of general matrix multiplication.

4/50



ME 780
The Convolution Operator

Section 2

The Convolution Operator

5/50



ME 780
The Convolution Operator

Mathematical Definition

The convolution operator is mathematically defined as:

s(t) = (x ∗ w)(t) =
∫

x(a)w(t − a)da

=
∞∑

a=−∞
x(a)w(t − a)

Note that the infinite summation can be implemented as a
finite one as it is assumed that these functions are zero
everywhere except at t where a measurement is provided.

6/50



ME 780
The Convolution Operator

Terminology

I is usually a multidimensional array of data termed the input.
K is usually a multidimensional array of parameters termed
the kernel or the filter.
S is the output or feature map.

7/50



ME 780
The Convolution Operator

Mathematical Definition : 2D Case

The convolution operator is mathematically defined as:

S(i , j) = (I ∗ K )(i , j) =
∑
m

∑
n

I(m, n)K (i − m, j − n)

=
∑
m

∑
n

I(i − m, j − n)K (m, n)

Usually in convolutions, we flip the kernel, which gives rise to
the above commutative property.
The commutative property above is useful for writing proofs.
It is not so useful for neural networks. Why?

8/50



ME 780
The Convolution Operator

Mathematical Definition : 2D Case

Most machine learning libraries implement cross-correlation
while calling it convolutions.
Cross correlation is defined as:

S(i , g) = (I ∗ K )(i , j) =
∑
m

∑
n

I(m, n)K (i + m, j + n)

=
∑
m

∑
n

I(i − m, j − n)K (m, n)

The logic behind the above is that usually, we learn the kernel
and thus it does not matter if it is flipped or not.
One second reason is that we usually employ convolutions
with functions that do not commute regardless of the
convolution flipping the kernel or not.

9/50



ME 780
The Convolution Operator

Example

10/50



ME 780
Motivation: Why Use Convolutions

Section 3

Motivation: Why Use Convolutions

11/50



ME 780
Motivation: Why Use Convolutions

Advantages For ML Systems

Convolutions leverage three important ideas that can help
improve a machine learning system:

Sparse Interactions
Parameter Sharing
Equivariant Representation

Moreover, convolutions provide a way to handle input of
different sizes.

12/50



ME 780
Motivation: Why Use Convolutions

Sparse Connectivity

Traditional Neural Networks have a parameter to model the
interaction of every element of the input vector with every
element of the output vector.
Convolutional Networks typically have sparse connectivity.
Sparse connectivity is achieved by making the kernel smaller
than the input.

13/50



ME 780
Motivation: Why Use Convolutions

Sparse Connectivity

14/50



ME 780
Motivation: Why Use Convolutions

Sparse Connectivity

If there are m inputs and n outputs, the fully connected layer
will have m × n parameters and the matrix multiplication
algorithm used in practice will have O(m × n) runtime per
example.
In the case of a convolutional layer, this bound is reduced to
O(k × n), where k < m is the number of sparse connections.
In a deep convolutional network,units in the deeper layers may
indirectly interact with a larger portion of the input.
This allows the network to efficiently describe complicated
interactions between many variables by constructing such
interactions from simple building blocks that each describe
only sparse interactions.

15/50



ME 780
Motivation: Why Use Convolutions

Parameter Sharing

Parameter sharing refers to using the same parameter for
more than one function in a model.
Convolutional layers heavily apply this concept through
applying the same kernel to every position of the input.
This does not affect the runtime at inference, but it affects
the memory requirement per layer as we now have to store
only k parameters.
Convolution is dramatically more efficient than dense matrix
multiplication in terms of memory requirements and statistical
efficiency.

16/50



ME 780
Motivation: Why Use Convolutions

Parameter Sharing

17/50



ME 780
Motivation: Why Use Convolutions

Equivariance

A function f (x) is equivariant to a function g(x) if
f (g(x)) = g(f (x)).
Convolution operators are equivariant to translation of the
input.
Convolution is not naturally equivariant to some other
transformations, such as changes in the scale or rotation of an
image. Other mechanisms are necessary for handling these
kinds of transformations.

18/50



ME 780
Convolutions In Pract1ice

Section 4

Convolutions In Pract1ice

19/50



ME 780
Convolutions In Pract1ice

Output Volume Size

20/50



ME 780
Convolutions In Pract1ice

Output Volume Size

In practice, three hyperparameters control the size of the
output of a convolutional layer.
The output depth of the volume is a hyper parameter

21/50



ME 780
Convolutions In Pract1ice

Number Of Parameters In a Convolutional Layer

In practice, three hyperparameters control the size of the
output of a convolutional layer.
The output depth of the volume is a hyperparameter and
corresponds to the number of filters we would like to use,
each learning to look for something different in the input.
The output width and height are controlled by the stride we
use to slide each filter and the padding we use to expand the
input.

22/50



ME 780
Convolutions In Pract1ice

Output Volume Size

23/50



ME 780
Convolutions In Pract1ice

Computing The Size Of The Output Volume

Assuming that the filters are m × m and we have K filters, we
can compute the size of our output volume according to the
following:

Wout = Win − m + 2Padding
Stride + 1

Hout = Hin − m + 2Padding
Stride + 1

Dout = K

24/50



ME 780
Convolutions In Pract1ice

Computing The Size Of The Output Volume

Assuming that the filters are m × m and we have K filters, we
can compute the size of our output volume according to the
following:

Wout = Win − m + 2 × Padding
Stride + 1

Hout = Hin − m + 2 × Padding
Stride + 1

Dout = K

25/50



ME 780
Convolutions In Pract1ice

Number Of Parameters In Convolutional Layers

The number of parameters in a convolutional layer can be
computed according to the following:

Parameters = m2 × k × Din + k

This is due to the layer having m2 × Din weights for k filters
and k biases.

26/50



ME 780
Convolutions In Pract1ice

Receptive Field

27/50



ME 780
Convolutions In Pract1ice

Additional Notes

The backward pass for a convolution operation (for both the
data and the weights) is also a convolution (but with
spatially-flipped filters). Libraries do that for you so no need
to worry about it.
1 × 1 convolutions are used to manipulate the depth of the
output volume. They can be thought of as a dot product
through a depth slice.
Many variations of convolution exist such as Dilated
Convolutions and Deformable Convolutions.

28/50



ME 780
Pooling Layers

Section 5

Pooling Layers

29/50



ME 780
Pooling Layers

Pooling

A pooling function replaces the output of the previous layer,
with a summary statistic of the nearby outputs.
Pooling helps to make representations become approximately
invariant to small translation of the input. If we translate the
input a small amount, the output of the pooling layer will not
change.
The use of pooling can be viewed as adding an infinitely
strong prior that the function the layer learns must be
invariant to small translations. When this assumption is
correct, it can greatly improve the statistical efficiency of the
network.

30/50



ME 780
Pooling Layers

Max Pooling vs Average Pooling

31/50



ME 780
Pooling Layers

Geoffrey Hinton On Pooling

The pooling operation used in convolutional neural networks
is a big mistake and the fact that it works so well is a disaster.
If the pools do not overlap, pooling loses valuable information
about where things are. We need this information to detect
precise relationships between the parts of an object.
He proposes ”capsules” (subnetworks in networks) as an
alternative to pooling.

32/50



ME 780
Pooling Layers

Additional Notes

Many people dislike the pooling operation and think that we
can get away without it.
For example, Striving for Simplicity: The All Convolutional
Net proposes to discard the pooling layer in favour of
architecture that only consists of repeated convolutional
layers.
Just use a larger stride every once in a while to shrink down
the input size.
Discarding pooling layers has also been found to be important
in training good generative models, such as variational
autoencoders (VAEs) or generative adversarial networks
(GANs).
It seems likely that future architectures will feature very few
to no pooling layers.

33/50



ME 780
Region Of Interest (ROI) Pooling

Section 6

Region Of Interest (ROI) Pooling

34/50



ME 780
Region Of Interest (ROI) Pooling

ROI Pooling

Region of interest pooling (also known as RoI pooling) is
an operation widely used in object detection tasks using
convolutional neural networks.
The operation was proposed in Fast RCNN paper in 2015.
Its purpose is to perform max pooling on inputs of
non-uniform sizes to obtain fixed-size feature maps.
This enables training architectures containing RPNs in an
end-to-end fashion.

35/50



ME 780
Region Of Interest (ROI) Pooling

ROI Pooling

ROI pooling employes three steps to transform the input
regions to similar size feature vectors:

Divide the region proposal into equal-sized sections (the
number of which is the same as the dimension of the output).
Find the largest value in each section.
Copy these max values to the output buffer.

36/50



ME 780
Region Of Interest (ROI) Pooling

ROI Pooling: Input

37/50



ME 780
Region Of Interest (ROI) Pooling

ROI Pooling: Region Of Interest

38/50



ME 780
Region Of Interest (ROI) Pooling

ROI Pooling: Devide Region To Compartments

39/50



ME 780
Region Of Interest (ROI) Pooling

ROI Pooling: Max Pool Compartments

40/50



ME 780
Region Of Interest (ROI) Pooling

ROI Pooling: Feature Map Creation

41/50



ME 780
Region Of Interest (ROI) Pooling

Backporpagation Through ROI Pooling

For training a network in an end-to-end fashion, ROI pooling
layers need to be (sub)differentiable.
To compute the gradient across the ROI pooling layer, we use
the following:

∂L
∂xi

=
∑

r∈regions

∑
j∈locations

I(i = i∗(r , j)) ∂L
∂yr ,j

42/50



ME 780
Region Of Interest (ROI) Pooling

Backpropagation Through ROI Pooling

43/50



ME 780
Region Of Interest (ROI) Pooling

Conclusion

ROI pooling has different goals than regular pooling.
It allows the network to reuse the feature map for all ROIs.
It also allows obtaining same size feature vectors from
multimodal input.
Implementation now available in Tensor Flow.
(https://github.com/deepsense-io/roi-pooling)

44/50



ME 780
Example of A Convolutional Neural Network: VGG16

Section 7

Example of A Convolutional Neural Network:
VGG16

45/50



ME 780
Example of A Convolutional Neural Network: VGG16

VGG-16 Network

Proposed in 2014 by K.Simonyan and A. Zisserman.
Came in second place at the ImageNet ILSVRC-2014
challenge.
The surprise was the overwhelming simplicity of this network.
It only relied on 3 × 3 convolutional layers and 2x2 max
pooling layers, with the final 3 layers being fully connected
layers.

46/50



ME 780
Example of A Convolutional Neural Network: VGG16

VGG-16 Network

47/50



ME 780
Conclusion

Section 8

Conclusion

48/50



ME 780
Conclusion

Conclusion

Convolutional networks have played an important role in the
history of deep learning.
They were some of the first deep models to perform well, long
before arbitrary deep models were considered viable.
Convolutional networks were also some of the first neural
networks to solve important commercial applications and
remain at the fore front of commercial applications of deep
learning today.
An example is Yann LeCun’s Cheque reading network
developed at AT&T labs in 1998.

49/50



ME 780
Conclusion

Conclusion

Furthermore, convolutional nets were some of the first
working deep networks trained with back-propagation.
It is not entirely clear why convolutional networks succeeded
when general back-propagation networks were considered to
have failed. (Might be psychological)
Whatever the case, it is fortunate that convolutional networks
performed well decades ago.
In many ways, they carried the torch for the rest of deep
learning and paved the way to the acceptance of neural
networks in general.

50/50


	Introduction
	The Convolution Operator
	Motivation: Why Use Convolutions
	Convolutions In Pract1ice
	Pooling Layers
	Region Of Interest (ROI) Pooling
	Example of A Convolutional Neural Network: VGG16
	Conclusion

