
ME 780

Lecture 3: Regularization For Deep Models

Ali Harakeh

University of Waterloo

WAVE Lab
ali.harakeh@uwaterloo.ca

May 23, 2017

1/64

ME 780

Overview

1 Regularization: A Motivation
2 Regularization Strategies: Parameter Norm Penalties
3 Regularization Strategies: Dataset Augmentation
4 Regularization Strategies: Noise Robustness
5 Regularization Strategies: Early Stopping
6 Regularization Strategies: Parameter Tying and Parameter

Sharing
7 Regularization Strategies: Multitask Learning
8 Regularization Strategies: Bagging and Other Ensemble

Methods
9 Regularization Strategies: Dropout
10 Regularization Strategies: Adversarial Training

2/64

ME 780
Regularization: A Motivation

Section 1

Regularization: A Motivation

3/64

ME 780
Regularization: A Motivation

Introduction

Regularization is any modification made to the learning
algorithm with an intention to lower the generalization error
but not the training error.
Many standard regularization concepts from machine learning
can be readily extended to deep models.

4/64

ME 780
Regularization: A Motivation

Introduction

In context of deep learning, most regularization strategies are
based on regularizing estimators. This is done through
reducing variance at the expense of increasing the bias of the
estimator.
An effective regularizer is one that decreases the variance
significantly while not overly increasing the bias.

5/64

ME 780
Regularization: A Motivation

Introduction

We discussed three regimes concerning the capacity of models
where the model either:

Excludes the true data generating process which induces bias
(underfitting).
Matches the true data generating process.
Includes the true data generating process, but also includes
many other possible candidates, which results in variance
dominating the estimation error (overfitting).

The goal of regularization is to take the model from the third
to the second regime.

6/64

ME 780
Regularization: A Motivation

Motivation

In practice, we never have access to the true data generating
distribution. This is a direct result of the extremely
complicated domains (images, text and audio sequences) we
work with when applying deep learning algorithms.
In most applications of deep learning, the data generating
process is almost certainly outside the chosen model family.

7/64

ME 780
Regularization: A Motivation

Motivation

All of the above implies that controlling the complexity of the
model is not a simple matter of finding the right model size
and the right number of parameters.
Instead, deep learning relies on finding the best fitting model
as a large model that has been regularized properly.

8/64

ME 780
Regularization Strategies: Parameter Norm Penalties

Section 2

Regularization Strategies: Parameter Norm
Penalties

9/64

ME 780
Regularization Strategies: Parameter Norm Penalties

Parameter Norm Penalties

The most traditional form of regularization applicable to deep
learning is the concept of parameter norm penalties.
This approach limits the capacity of the model by adding the
penalty Ω(θ) to the objective function resulting in:

J̃(θ) = J(θ) + αΩ(θ)

α ∈ [0,∞) is a hyperparameter that weights the relative
contribution of the norm penalty to the value of the objective
function.

10/64

ME 780
Regularization Strategies: Parameter Norm Penalties

Parameter Norm Penalties

When the optimization procedure tries to minimize the
objective function, it will also decrease some measure of size
of the parameters θ.
Note: The bias terms in the affine transformations of deep
models usually require less data to be fit and are usually left
unregularized.
Without loss of generality, we will assume we will be
regularizing only the weights w.

11/64

ME 780
Regularization Strategies: Parameter Norm Penalties

L2 Norm Parameter Regularization

The L2 parameter norm penalty, also known as weight decay
drives w closer to the origin by adding the regularization term:

Ω(w) = 1
2 ||w||

2
2 = 1

2wT w

For now, assume there is no bias parameters, only weights.

12/64

ME 780
Regularization Strategies: Parameter Norm Penalties

L2 Norm Parameter Regularization

The update rule of gradient decent using L2 norm penalty is:

w← (1− εα)w− ε∇w J(w)

The weights multiplicatively shrink by a constant factor at
each step.

13/64

ME 780
Regularization Strategies: Parameter Norm Penalties

L1 Norm Parameter Regularization

L1 norm is another option that can be used to penalize the
size of model parameters.
L1 regularization on the model parameters w is:

Ω(θ) = ||w|| =
∑

i
|wi |

What is the difference between L2 and L1 norm penalty when
applied to machine learning models ? But what happens over
the entire course of training in both?

14/64

ME 780
Regularization Strategies: Parameter Norm Penalties

L2 Norm Parameter Regularization

The L2 Norm penalty decays the components of the vector w
that do not contribute much to reducing the objective
function.

15/64

ME 780
Regularization Strategies: Parameter Norm Penalties

L1 Norm Parameter Regularization

On the other hand, the L1 norm penalty provides solutions
that are sparse.
This sparsity property can be thought of as a feature
selection mechanism.

16/64

ME 780
Regularization Strategies: Parameter Norm Penalties

Conclusion

L2 norm penalty can be interpreted as a MAP Bayesian
Inference with a Gaussian prior on the weights.
On the other hand, L1 norm penalty can be interpreted as a
MAP Bayesian Inference with a Isotropic Laplace
Distribution prior on the weights.

17/64

ME 780
Regularization Strategies: Dataset Augmentation

Section 3

Regularization Strategies: Dataset
Augmentation

18/64

ME 780
Regularization Strategies: Dataset Augmentation

Dataset Augmentation

We have seen that for consistent estimators, the best way to
get better generalization is to train on more data.
The problem is that under most circumstances, data is
limited. Furthermore, labelling is an extremely tedious task.
Dataset Augmentation provides a cheap and easy way to
increase the amount of your training data.
Certain tasks such as steering angle regression require dataset
augmentation to perform well.

19/64

ME 780
Regularization Strategies: Dataset Augmentation

Dataset Augmentation: Color jitter

Color jitter is a very effective method to augment datasets.
It is also extremely easy to apply.
Fancy PCA was proposed by Krizhevsky et al. in the famous
Alex net paper. It is a way to perform color jitter on images.
Fancy PCA Algorithm:

Perform PCA on the three color channels of your entire
dataset.
From the covariance matrix provided by PCA, extract the
eigenvalues λ1, λ2, λ3 and their corresponding eigenvectors
p1, p2, p3.
Add pi [a1λ1, a2λ2, a3λ3]T to the ith color channel. a1...a3 are
random variables sampled for each augmented image from a
zero mean Gaussian distribution with a variance of 0.1.

20/64

ME 780
Regularization Strategies: Dataset Augmentation

Dataset Augmentation: Color jitter

21/64

ME 780
Regularization Strategies: Dataset Augmentation

Dataset Augmentation: Horizontal Flipping

Horizontal Flipping is applied on data that exhibit horizontal
asymmetry.
Care must be taken to propagate the labels through this
transformation.
Horizontal flipping can be applied to natural images and point
clouds. Essentially, one can double the amount of data
through horizontal flipping.

22/64

ME 780
Regularization Strategies: Dataset Augmentation

Dataset Augmentation: Horizontal Flipping

23/64

ME 780
Regularization Strategies: Dataset Augmentation

Dataset Augmentation: Conclusion

Many other task specific dataset augmentation algorithms
exist. It is highly advised to always use dataset augmentation.
However, be careful not to alter the correct output!
Example: b and d, horizontal flipping.
Furthermore, when comparing two machine learning
algorithms train both with either augmented or
non-augmented dataset. Otherwise, no subjective decision can
be made on which algorithm performed better.

24/64

ME 780
Regularization Strategies: Noise Robustness

Section 4

Regularization Strategies: Noise Robustness

25/64

ME 780
Regularization Strategies: Noise Robustness

Noise Robustness

Noise Injection can be thought of as a form of
regularization. The addition of noise with infinitesimal
variance at the input of the model is equivalent to imposing a
penalty on the norm of the weights (Bishop, 1995).
Noise can be injected at different levels of deep models.

26/64

ME 780
Regularization Strategies: Noise Robustness

Noise Robustness : Noise Injection on Weights

Noise added to weights can be interpreted as a more
traditional form of regularization.
This form of regularization encourages the parameters to go
to regions of parameter space where small perturbations of
the weights have a relatively small influence on the output.
In other words, it pushes the model into regions where the
model is relatively insensitive to small variations in the
weights, finding points that are not merely minima, but
minima surrounded by flat regions (Hochreiter and
Schmidhuber, 1995).

27/64

ME 780
Regularization Strategies: Noise Robustness

Noise Robustness : Noise Injection on Outputs

Most datasets have some amount (A LOT!) of mistakes in the
y labels. Minimizing our cost function on wrong labels can be
extremely harmful.
One way to remedy this is to explicitly model the noise on
labels. This is done through setting a probability ε for which
we think the labels are correct.
This probability is easily incorporated into the cross entropy
cost function analytically.
An example is label smoothing.

28/64

ME 780
Regularization Strategies: Noise Robustness

Noise Robustness : Label Smoothing

Usually, we have output vectors provided to us as
ylabel = [1, 0, 0, 0...0].
Softmax output is usually of the form
yout = [0.87, 0.001, 0.04, 0.1,0.03].
Maximum likelihood learning with a softmax classifier and
hard targets may actually never converge, the softmax can
never predict a probability of exactly 0 or exactly 1, so it will
continue to learn larger and larger weights, making more
extreme predictions. forever

29/64

ME 780
Regularization Strategies: Noise Robustness

Noise Robustness : Label Smoothing

Label smoothing replaces the label vector with
ylabel = [1− ε, ε

K−1 ,
ε

K−1 ,
ε

K−1 ...
ε

K−1].
The above representation has the advantage of preventing the
pursuit of hard probabilities without discouraging correct
classification.

30/64

ME 780
Regularization Strategies: Early Stopping

Section 5

Regularization Strategies: Early Stopping

31/64

ME 780
Regularization Strategies: Early Stopping

Motivation

32/64

ME 780
Regularization Strategies: Early Stopping

Early Stopping: Motivation

When training models with sufficient representational capacity
to overfit the task, we often observe that training error
decreases steadily over time, while the error on the validation
set begins to rise again.
The occurrence of this behaviour in the scope of our
applications is almost certain.
This means we can obtain a model with better validation set
error (and thus,hopefully better test set error) by returning to
the parameter setting at the point in time with the lowest
validation set error.
This is termed Early Stopping.

33/64

ME 780
Regularization Strategies: Early Stopping

Early Stopping: Meta-Algorithm

34/64

ME 780
Regularization Strategies: Early Stopping

Early Stopping: Practical Issues

Early Stopping is probably one of the most used regularization
strategies in deep learning.
Early stopping can be thought of as a hyperparameter
selection method, where training time is the hyperparameter
to be chosen.
Choosing the training time automatically can be done through
a single run through the training phase, the only addition
being the evaluation of the validation set error at every n
iterations. This is usually done on a second GPU.
Overhead for writing parameters to disk is negligible.

35/64

ME 780
Regularization Strategies: Early Stopping

Early Stopping: Practical Issues

Early Stopping is probably one of the most used regularization
strategies in deep learning.
Early stopping can be thought of as a hyperparameter
selection method, where training time is the hyperparameter
to be chosen.
However, a portion of data should be reserved for validation.

36/64

ME 780
Regularization Strategies: Early Stopping

Early Stopping: Exploiting The Validation Data

To exploit all of our precious training data we can:
Employ early stopping as described above.
Retrain using all of the data up to the point that was
determined during early stopping.

Some subtleties arise regarding the definition of point.
Do we train for the same number of parameter updates or for
the same number of epochs(passes through training data) ?

37/64

ME 780
Regularization Strategies: Early Stopping

Early Stopping: Exploiting The Validation Data

A second strategy to exploit the full training dataset would be
to:

Employ early stopping as described above.
Continue training with the parameters determined by early
stopping, using the validation set data.

This strategy avoids the high cost of retraining the model
from scratch, but is not well-behaved.
Since we no longer have a validation set, we cannot know if
generalization error is improving or not. Our best bet is to
stop training when the training error is not decreasing much
any more.

38/64

ME 780
Regularization Strategies: Parameter Tying and Parameter Sharing

Section 6

Regularization Strategies: Parameter Tying and
Parameter Sharing

39/64

ME 780
Regularization Strategies: Parameter Tying and Parameter Sharing

Parameter Sharing

So far, we have discussed regularization as adding constraints
or penalties to the parameters with respect to a fixed region.
However, we might want to express priors on parameters in
other ways. Specifically, we might not know which region the
parameters would lie in, but rather that there is some
dependencies between them.
Most common type of dependency: Some parameters should
be close to each other.

40/64

ME 780
Regularization Strategies: Parameter Tying and Parameter Sharing

Parameter Tying

Parameter Tying refers to explicitly forcing the parameters
of two models to be close to each other, through the norm
penalty:

||w(A) −w(B)||

Here, w(A) refers to the weights of the first model while w(B)

refers to those of the second one.

41/64

ME 780
Regularization Strategies: Parameter Tying and Parameter Sharing

Parameter Sharing

Parameter Sharing imposes much stronger assumptions on
parameters through forcing the parameter sets to be equal.
Examples would be Siamese networks, convolution operators,
and multitask learning.

42/64

ME 780
Regularization Strategies: Multitask Learning

Section 7

Regularization Strategies: Multitask Learning

43/64

ME 780
Regularization Strategies: Multitask Learning

Multitask Learning

Multitask Learning is a way to improve generalization by
pooling the examples arising out of several tasks.
Usually, the most common form of multitask learning is
performed through an architecture which is devided to two
parts:

Task-specific parameters (which only benefit from the
examples of their task to achieve good generalization).
Generic parameters, shared across all the tasks (which benefit
from the pooled data of all the tasks).

Multitask learning is a form of parameter sharing.

44/64

ME 780
Regularization Strategies: Multitask Learning

Multitask Learning

45/64

ME 780
Regularization Strategies: Multitask Learning

Multitask Learning

Improved generalization and generalization error bounds
(Baxter, 1995) can be achieved because of the shared
parameters, for which statistical strength can be greatly
improved in proportion with the increased number of examples
for the shared parameters, compared to the scenario of
single-task models.
Intuitively, the additional task imposes constraints on the
parameters in the shared layers, preventing overfitting.
Improvement in generalization only occurs when there is
something shared across the tasks at hand.

46/64

ME 780
Regularization Strategies: Bagging and Other Ensemble Methods

Section 8

Regularization Strategies: Bagging and Other
Ensemble Methods

47/64

ME 780
Regularization Strategies: Bagging and Other Ensemble Methods

Bagging

Bagging (short for bootstrap aggregating) is a technique
for reducing generalization error through combining several
models (Breiman, 1994).
Bagging is defined as follows:

Train k different models on k different subsets of training
data, constructed to have the same number of examples as the
original dataset through random sampling from that dataset
with replacement.
Have all of the models vote on the output for test examples.

Techniques employing bagging are called ensemble models.

48/64

ME 780
Regularization Strategies: Bagging and Other Ensemble Methods

Bagging

The reason that Bagging works is that different models will
usually not all make the same errors on the test set.
This is a direct results of training on k different subsets of the
training data, where each subset is missing some of the
examples from the original dataset.
Other factors such as differences in random initialization,
random selection of mini-batches,differences in
hyperparameters, or different outcomes of non-deterministic
implementations of neural networks are often enough to cause
different members of the ensemble to make partially
independent errors.

49/64

ME 780
Regularization Strategies: Bagging and Other Ensemble Methods

Bagging

The reason that Bagging works is that different models will
usually not all make the same errors on the test set.
This is a direct results of training on k different subsets of the
training data, where each subset is missing some of the
examples from the original dataset.
Other factors such as differences in random initialization,
random selection of mini-batches,differences in
hyperparameters, or different outcomes of non-deterministic
implementations of neural networks are often enough to cause
different members of the ensemble to make partially
independent errors.

50/64

ME 780
Regularization Strategies: Bagging and Other Ensemble Methods

Ensemble Models

On average, the ensemble will perform at least as well as any
of its members, and if the members make independent errors,
the ensemble will perform significantly better than its
members.
Proof ?
The only disadvantage of ensemble models is that they do not
provide us with a scalable way to improve performance.
Usually, ensemble models of more than 2-3 networks become
too tedious to train and handle.

51/64

ME 780
Regularization Strategies: Dropout

Section 9

Regularization Strategies: Dropout

52/64

ME 780
Regularization Strategies: Dropout

Dropout

Dropout provides a computationally inexpensive but powerful
method of regularizing a broad family of models.
Dropout provides an inexpensive approximation to training
and evaluating a bagged ensemble of exponentially many
neural networks.
Specifically, dropout trains the ensemble consisting of all
sub-networks that can be formed by removing non-output
units from an underlying base network.

53/64

ME 780
Regularization Strategies: Dropout

Dropout1

54/64

ME 780
Regularization Strategies: Dropout

Training with Dropout

To train with dropout,we use a minibatch-based learning
algorithm that makes small steps, such as stochastic gradient
descent.
Each time we load an example into a minibatch, we randomly
sample a different binary mask to apply to all of the input and
hidden units in the network.
The mask for each unit is sampled independently from all of
the others.
Typically, the probability of including a hidden unit is 0.5,
while the probability of including an input unit is 0.8.

55/64

ME 780
Regularization Strategies: Dropout

Dropout

Dropout allows us to represent an exponential number of
models with a tractable amount of memory.
Furthermore, Dropout removes the need to accumulate model
votes at the inference stage.
Dropout can intuitively be explained as forcing the model to
learn with missing input and hidden units.

56/64

ME 780
Regularization Strategies: Dropout

Dropout Training

Dropout training has some intricacies we need to be wary of.
At training time, we are required to divide the output of each
unit by the probability of that unit’s dropout mask.
The goal is to make sure that the expected total input to a
unit at test time is roughly the same as the expected total
input to that unit at train time, even though half the units at
train time are missing on average.
No theoretically satisfying basis for the accuracy of this
approximate training rule in deep non linear networks, but
empirically it performs very well.

57/64

ME 780
Regularization Strategies: Dropout

Conclusion

Dropout is that it is very computationally cheap, using
dropout during training requires only O(n) computation per
example per update,to generate n random binary numbers and
multiply them by the state.
Dropout does not significantly limit the type of model or
training procedure that can be used. It works well with nearly
any model that uses a distributed representation and can be
trained with stochastic gradient descent.

58/64

ME 780
Regularization Strategies: Dropout

Conclusion

Though the cost per-step of applying dropout to a specific
model is negligible,the cost of using dropout in a complete
system can be significant.
Applying Dropout indirectly requires us to design larger
systems to preserve capacity. Larger systems usually are
slower at inference time.
Practitioners have to keep in mind that for very large datasets,
regularization confers little reduction in generalization error.
In these cases, the computational cost of using dropout and
larger models may outweigh the benefit of regularization.

59/64

ME 780
Regularization Strategies: Adversarial Training

Section 10

Regularization Strategies: Adversarial Training

60/64

ME 780
Regularization Strategies: Adversarial Training

Adversarial Training

In many cases, neural networks have begun to reach human
performance when evaluated on an i.i.d. test set.
However, szegedy et al.(2014) found that even networks that
have achieved human accuracy, have a 100% error rate on
examples that have been intentionally constructed to ”fool”
the network.
In many cases, the modified example is so similar to the
original one, human observers cannot tell the difference.
These examples are called adversarial examples.

61/64

ME 780
Regularization Strategies: Adversarial Training

Adversarial Examples

62/64

ME 780
Regularization Strategies: Adversarial Training

Adversarial Training

Adversarial examples are interesting in the context of
regularization because one can reduce the error rate on the
original i.i.d.test set via adversarial training - training on
adversarially perturbed examples from the training set.
Adversarial training discourages highly sensitive linear
behaviour through explicitly introducing a local constancy
prior into supervised neural nets.

63/64

ME 780
Regularization Strategies: Adversarial Training

Next Lecture

Next Lecture, Optimization.

64/64

	Regularization: A Motivation
	Regularization Strategies: Parameter Norm Penalties
	Regularization Strategies: Dataset Augmentation
	Regularization Strategies: Noise Robustness
	Regularization Strategies: Early Stopping
	Regularization Strategies: Parameter Tying and Parameter Sharing
	Regularization Strategies: Multitask Learning
	Regularization Strategies: Bagging and Other Ensemble Methods
	Regularization Strategies: Dropout
	Regularization Strategies: Adversarial Training

