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Learning Algorithms

A machine learning algorithm is an algorithm that is able to
learn from data.
A machine is said to have learned from Experience E with
respect to some Task T , as measured by a Performance
Measure P, if its performance on T as measured by P,
improves with E .
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The Task T

Example T : Vehicle Detection In Lidar Data.
Approach 1: Hard code what a vehicle is in Lidar data based
on Human experience.
Approach 2: Learn what a vehicle is in Lidar data.
Machine learning allows us to tackle tasks that are too
difficult to be hard coded by humans.
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The Task T

Machine learning algorithms are usually described in terms of
how the algorithm should process an example x ∈ Rn.
Each entry xj of x is called a feature.
Example : Features in an image can be its pixel values.
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Common Machine Learning Tasks

Classification: Find f (x) : Rn ⇒ {1, ....., k} that maps
examples x to one of k classes.
Regression: Find f (x) : Rn ⇒ R that maps examples to the
real line.
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The Performance Measure P

A quantitative measure of performance is required in order to
evaluate a machine’s ability to learn.
P depends on task T .
Classification: P is usually the accuracy of the model .
Another equivalent measure is the error rate (also called the
expected 0-1 loss).
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The Experience E

Machine learning algorithms can be classified into two classes:
supervised and unsupervised based on what kind of
experience they are allowed to have during the learning
process.
Machine learning algorithms are usually allowed to experience
an entire dataset.
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Categorizing Algorithms Based On E

Unsupervised learning algorithms experience a dataset
containing many features, then learn useful properties of the
structure of this dataset.
Supervised learning algorithms experience a dataset
containing features, but each example is also associated with
a label or target.
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Dataset Splits

We usually split our dataset to three subsets: train, val, test.
E is usually experiencing train and val sets.
P is usually evaluated on test set.
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Section 2

Capacity, Overfitting, and Underfitting

12/69



ME 780
Capacity, Overfitting, and Underfitting

The main challenge in machine learning is that the algorithm
must perform well on new, unseen input data.
This ability is called generalization.
We usually have access to the training set, and we try to
minimize some error measure called the training error. This
is standard optimization.
What differentiates machine learning from standard
optimization is that we care to minimize the generalization
error, the error evaluated on the test set.
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The Data Generating Distribution pdata

Is minimizing over training set error guaranteed to provide
parameters that minimize the test set error ?
Under the i.i.d assumption on train and test examples, the
answer is ”Yes”.
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The factors that determine how well a machine learning algorithm
performs is its ability to:

Make the training error small.
Make the gap between training and test error small.

15/69



ME 780
Capacity, Overfitting, and Underfitting

Overfitting, Underfitting, and Capacity

Underfitting occurs when the model is not able to obtain a
sufficiently low error value on the training set.
Overfitting occurs when the gap between the training error
and test error is too large.
Capacity is a model’s ability to fit a wide variety of functions.
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Overfitting, Underfitting, and Capacity

There is a direct relation between the model’s capacity and
whether it will overfit or underfit.
Models with low capacity may struggle to fit the training set.
Models with high capacity can overfit by memorizing
properties of the training set that do not serve them well on
the test set.
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Controlling Capacity: The Hypothesis Space

Hypothesis Space : the set of functions that the learning
algorithm is allowed to select as being the solution.
Increase the model’s capacity by expanding the hypothesis
space.
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Controlling Capacity: The Hypothesis Space
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Controlling Capacity: The Hypothesis Space

From statistical learning theory: The discrepancy between
training error and generalization error is bounded from above
by a quantity that grows as the model capacity grows but
shrinks as the number of training examples increases (Vapnik
and Chervonenkis, 1971).
Intellectual justification that machine learning algorithms can
work!
Note: We must remember that while simpler functions are
more likely to generalize (to have a small gap between
training and test error) we must still choose a sufficiently
complex hypothesis to achieve low training error.
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Controlling Capacity: The Hypothesis Space
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Bayes Error

The ideal model is an oracle that simply knows the true
probability distribution that generates the data.
The error incurred by an oracle making predictions from the
true distribution p(x, y) is called the Bayes error.
Example: In the case of supervised learning, the mapping
from x to y may be inherently stochastic, or y may be a
deterministic function that involves other variables besides
those included in x.
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The No Free Lunch Theorem

Averaged over all possible data generating distributions, every
classification algorithm has the same error rate when
classifying previously unobserved points.
What are the consequences of this theorem?
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Controlling The Capacity: Regularization

The behavior of our algorithm is strongly affected not just by
how large we make the set of functions allowed in its
hypothesis space, but by the specific identity of those
functions.
Regularization can be used as a way to give preference to one
solution in our hypothesis space (more general than restricting
the space itself).
Weight Decay: λwT w
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Controlling The Capacity: Regularization

More formally, Regularization is any modification we make to
a learning algorithm that is intended to reduce its
generalization error but not its training error.
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Section 3

Hyperparameters and Validation Sets
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Hyperparameters

Hyperparameters are any variables that affect the behavior
of the learning algorithm, but are not adapted by the
algorithm itself.
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Importance of the Validation Set

In a test-train-val split, learning is performed on the train
set. The choice of hyperparameters is done by evaluation on
the val set.
Construction of a train-val-test split: Split the data set to
train-test at a 1 : 1 ratio. Then, split the train set to
train-val at a 4 : 1 ratio.
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What happens when the same test set has been used
repeatedly to evaluate performance of different algorithms
over many years?
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Section 4

Estimators, Bias and Variance
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Estimators, Bias and Variance

Point Estimation

Point estimation is an attempt to provide the single ”best”
prediction θ̂ of some quantity of interest θ. This quantity
might be a scalar, vector, matrix, or even a function.
Usually, point estimation is done using a set of data points:

θ̂ = g(x (1), ..., x (m))

Note that g does not need to return a value close to θ, it even
might not have the same set of allowable values.
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Bias

The bias of an estimator is:

bias(θ̂) = E(θ̂)− θ

Bias measures the expected deviation of the estimate from the
true value of the function or parameter.
We say an estimator is unbiased if its bias is 0.
We say an estimator is asymptotically unbiased if
lim

m→∞
bias(θ̂) = 0.
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Variance

The variance Var(θ̂) of an estimator provides a measure of
how we would expect the estimate we compute from data to
vary as we independently resample the dataset from the
underlying data generating process.
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The Bias-Variance Trade Off

How to choose between two estimators, one with large bias
and the other with large variance ?
Mean-Square Error of the estimates:

MSE = E[(θ̂ − θ)2]
= Bias(θ̂)2 + Var(θ̂)

MSE incorporates both bias and variance components.
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Relation To Machine Learning

The relationship between bias and variance is tightly linked to
the machine learning concepts of capacity, underfitting and
overfitting.
How ?
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Consistency

Consistency is a desirable property of estimators. It insures
that as the number of data points in our data set increase,
our point estimate converges to the true value of θ.
More formally, consistency states that:

lim
m→∞

θ̂
p→ θ

The convergence here is in probability.
Consistency of an estimator ensures that the bias will diminish
as our training data set grows.
It is better to choose consistent estimators with large bias
over estimators with small bias and large variance. Why ?
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Section 5

ML and MAP Estimators
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ML and MAP Estimators

Maximum Likelihood Estimation

Maximum likelihood (ML) is a principle used to derive
estimators.
Given m examples X = x (1), ...., x (m) drawn independently
form data generating distribution pdata:

θML = argmax
θ

pmodel (X; θ)

pmodel (x; θ) maps any configuration x to a real number, hence
tries to estimate the true data distribution pdata .
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Maximum Likelihood Estimation

After some mathematical manipulation:

θML = argmax
θ

Ex∼p̂data log pmodel (x, θ)

Ideally, we would like to have this expectation over pdata.
Unfortunately, we only have access to the empirical
distribution p̂data from training data.
Maximum likelihood can be viewed as a minimization of the
dissimilarity between p̂data and pmodel . How ?
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Maximum Likelihood Estimation

Maximum likelihood can be shown to be the best estimator,
asymptotically in terms of its rate of convergence as m→∞.
The estimator derived by ML is consistent. However, certain
conditions are required for consistency to hold:

The true distribution pdata must lie within the model family
pmodel (.; θ). Otherwise, no estimator can recover pdata even
with infinite training examples.
There needs to exist a unique θ. Otherwise, ML will recover
pdata but will not be able to determine the true value of θ used
in the data generation process.

Under these conditions, you are guaranteed to improve the
performance of your estimator with more training data.
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Maximum A Posteriori Estimation
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Maximum A Posteriori Estimation

Bayesian Statistics: The dataset is directly observed and so
is not random. On the other hand, the true parameter θ is
unknown or uncertain and thus is represented as a random
variable.
Before observing data, we represent our knowledge of θ using
the prior probability distribution p(θ). After observing data,
we use bayes rule to compute the posterior distribution
p(θ|x (1)...x (m)).
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Maximum A Posteriori Estimation

Usually, priors are chosen to be high entropy distributions such
as uniform or Gaussian distributions. These distributions are
described as broad.
From Bayes rule we have:

p(θ|x (1)...x (m)) = p(x (1)...x (m)|θ)p(θ)
p(x (1)...x (m))
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Maximum A Posteriori Estimation

To predict the distribution over new input data, marginalize
over θ:

p(xnew |x (1)...x (m)) =
∫

p(xnew |θ)p(θ|x (1)...x (m))dθ

Example: Bayesian Linear Regression.
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Maximum A Posteriori Estimation

Maximum a posteriori estimation (MAP) tries to overcome
the intractability of the full Bayesian treatment, by providing
point estimates using the posterior probability:

θMAP = argmax
θ

p(θ|x) = argmax
θ

log p(x|θ) + log p(θ)

MAP Bayesian inference has the advantage of leveraging
information that is brought by the prior and cannot be found
in the training data.
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Section 6

Gradient Based Optimization
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Optimization

Optimization refers to the task of either minimizing or
maximizing some function f (x) by altering the value of x.
f (x) is called an objective function. In context of machine
learning, it is also called the loss, cost, or error function.
Notation: x∗ = argmin

x
f (x) is the value of x that minimizes

f (x).
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Using The Derivative For Optimization

The derivative of a function specifies how to scale a small
change in input in order to obtain the corresponding change in
output.

f (x + ε) ≈ f (x) + ε∇xf (x)

The derivative is useful for optimization because it allows
knowledge of how to change x to improve f (x).
Example: f (x− ε sign(∇xf (x))) ≤ f (x) for small enough ε.
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Critical Points

A critical point or stationary point is a point x with
∇xf (x) = 0.
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Global vs Local Optimal Points
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Gradient Descent

Gradient descent proposes to update the parameter according
to:

x← x− ε∇xf (x)

ε is referred to as the learning rate.
Gradient descent converges when all the elements in the
gradient are almost equal to zero.
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Gradient Descent
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Stochastic Gradient Descent

Nearly all of deep learning is powered by one optimization
algorithm: SGD.
Motivation behind SGD: The cost function used by a machine
learning algorithm often decomposes as a sum over training
examples of some per-example loss function:

J(θ) = Ex,y∼p̂dataL(x, y , θ)

= 1
m

m∑
i=1

L(x(i), y (i), θ)
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Stochastic Gradient Descent

To minimize the loss over θ, the gradient needs to be
computed.

∇θJ(θ) = 1
m

m∑
i=1
∇θL(x(i), y (i), θ)

What is the computational cost for computing the gradient
above ?
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Stochastic Gradient Descent

SGD relies on the fact that the gradient is an expectation,
hence can be approximated with a small set of samples.
let m′ be a minibatch uniformly drawn from our training data.

∇θJ(θ) = 1
m′

m′∑
i=1
∇θL(x(i), y (i), θ)

The SGD update rule becomes :

θ ← θ + ε∇θJ(θ)
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Section 7

Challenges That Motivate Deep Learning
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Major Obstacles For Traditional Machine Learning

The development of deep learning was motivated by the
failure of traditional ML algorithms when applied to central
problems in AI due to:

The mechanisms used to achieve generalization in traditional
machine learning are insufficient to learn complicated functions
in high-dimensional spaces.
The challenge of generalizing to new examples becomes
exponentially more difficult when working with
high-dimensional data.
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The Curse Of Dimensionality

Many machine learning problems become exceedingly difficult
when the number of dimensions in the data is high.
This is because the number of distinct configurations of a set
of variables increase exponentially as the number of variables
increase.
How does that affect ML algorithms ?
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The Curse Of Dimensionality
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Local Constancy And Smoothness Regularization

In order to generalize well, machine learning algorithms need
to be guided by prior beliefs about what kind of function they
should learn.
Among the most widely used priors is the smoothness or
local constancy prior.
A function is said to have local constancy if it does not
change much within a small region of space.
As the machine learning algorithm becomes simpler, it tends
to rely extensively on this prior.
Example: K nearest neighbors.
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Local Constancy And Smoothness Regularization

In general, traditional learning algorithms require O(k)
examples to distinguish O(k) regions in space.
Is there a way to represent a complex function that has many
more regions to be distinguished than the number of training
examples ?
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Local Constancy And Smoothness Regularization

Key insight: Even though the number of regions of a
function can be very large, say O(2k), the function can be
defined with O(k) examples as long as we introduce additional
dependencies between regions via generic assumptions.
Result: Non local generalization is actually possible.
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Local Constancy And Smoothness Regularization

Example assumption: The data was generated by the
composition of factors or features, potentially at multiple
levels in a hierarchy. (core idea in deep learning)
To a certain point, the exponential advantages conferred by
the use of deep, distributed representations counter the
exponential challenges posed by the curse of dimensionality.
Many other generic mild assumptions allow an exponential
gain in the relationship between the number of examples and
the number of regions that can be distinguished.
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Manifold Learning

A manifold is a connected region in space. Mathematically, it
is a set of points, associated with a neighborhood around each
points.
From any point, the surface of the manifold appears as a
euclidean space.
Example: We observe the world as a 2-D plane, whereas in
fact it is a spherical manifold in 3-D space.
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Manifold Learning
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Manifold Learning

Most AI problems seem hopeless if we expect algorithms to
learn interesting variations over all of Rn.
Manifold Learning: Most of Rn consists of invalid input.
Interesting input occurs only along a collection of manifolds
embedded in Rn.
Conclusion: probability mass is highly concentrated.
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Manifold Learning

Fortunately, there is evidence to support the above
assumptions.
Observation 1: Probability distributions in natural data
(images, text strings, and sound) is highly concentrated.
Observation 2: Examples encountered in natural data are
connected to each other by other examples, with each
example being surrounded by similar data.
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Manifold Learning

Training examples from the QMULMultiview Face Dataset.
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Conclusion

Deep learning present a framework to solve tasks that cannot
be solved by traditional ML algorithms.
Next lecture: Feed Forward Neural Networks.
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