3D Object Proposals using Stereo Imagery for Accurate Object Class Detection

Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Huimin Ma, Sanja Fidler and Raquel Urtasun

Presentation by Jungwook Lee

Why use proposals?

- Smart proposal generation methods helps in reduce the search space

- High recall contributes to higher accuracy for overall detection

- Current deep neural networks have very high performance on classification

- 3D vs. 2D Proposals (occlusion, scale variation)

3D Object Proposal Generation

- Proposal Generation as Energy Minimization

$$E(\mathbf{x}, \mathbf{y}) = \mathbf{w}_{c,pcd}^{\top} \phi_{pcd}(\mathbf{x}, \mathbf{y}) + \mathbf{w}_{c,fs}^{\top} \phi_{fs}(\mathbf{x}, \mathbf{y}) + \mathbf{w}_{c,ht}^{\top} \phi_{ht}(\mathbf{x}, \mathbf{y}) + \mathbf{w}_{c,ht-contr}^{\top} \phi_{ht-contr}(\mathbf{x}, \mathbf{y}).$$

Point Cloud Density

- Measure of how dense is a bounding box with point clouds

$$\phi_{pcd}(\mathbf{x}, \mathbf{y}) = \frac{\sum_{v \in \Omega(\mathbf{y})} P(v)}{|\Omega(\mathbf{y})|}$$

Free Space

- Potential term to encourage less free space within the box

$$\phi_{fs}(\mathbf{x}, \mathbf{y}) = \frac{\sum_{v \in \Omega(\mathbf{y})} (1 - F(v))}{|\Omega(\mathbf{y})|}$$

Height Prior

- Potential which uses known average class height

$$\phi_{ht}(\mathbf{x}, \mathbf{y}) = \frac{1}{|\Omega(\mathbf{y})|} \sum_{v \in \Omega(\mathbf{y})} H_c(v)$$

with

$$H_c(v) = \begin{cases} \exp\left[-\frac{1}{2}\left(\frac{d_v - \mu_{c,ht}}{\sigma_{c,ht}}\right)^2\right], & \text{if } P(v) = 1\\ 0, & \text{o.w.} \end{cases}$$

Height Contrast

- Potential that uses the fact surrounding box should have lower values of height relative to the "class box"

$$\phi_{ht-contr}(\mathbf{x}, \mathbf{y}) = \frac{\phi_{ht}(\mathbf{x}, \mathbf{y})}{\phi_{ht}(\mathbf{x}, \mathbf{y}^+) - \phi_{ht}(\mathbf{x}, \mathbf{y})}$$

depth-Feat

Prior

Inferencing

Steps:

- 1) Compute x, Discretize 3D space, Ground plane estimation
- 2) Candidate box sampling (along ground plane, skip empty boxes)
- 3) Exhaustive scoring based on $E(\mathbf{x}, \mathbf{y})$
- 4) NMS to obtain top K **diverse** 3D proposals

Greedy Selection Algorithm

$$\begin{aligned} \mathbf{y}^m &= \operatorname*{argmin}_{\mathbf{y} \in \mathcal{Y}} E(\mathbf{x}, \mathbf{y}) \\ \text{s.t.} \quad \operatorname{IoU}(\mathbf{y}, \mathbf{y}^i) < \delta, \quad \forall i \in \{0, \dots, m-1\} \end{aligned}$$

3D Object Detection

Input : top-ranked 3D object proposals, stereo image (RGB, HHA)

Output: Bounding Box Regression Parameters, Class Score, Orientation

- Deep Neural Networks: Convolutional Networks (cs231n)

- Based on R-CNN variant, Fast R-CNN

2D Detection Architecture

3D Detection Architecture

Performance Measures

- Proposal Recall: Measure of how much of the objects that the proposals extract from the ground truth set.
- Precision: Measure of how many of the actual positive detection are indeed true objects.

$$R_{OB} = \frac{\text{N.o. correctly detected rectangles}}{\text{N.o. rectangles in the database}}$$
$$P_{OB} = \frac{\text{N.o. correctly detected rectangles}}{\text{Total n.o. detected rectangles}}$$

Performance Measures

- Average Precision (2D, 3D), Average Localization Precision

$$AP = \frac{1}{11} \sum_{r \in \{0, 0.1, \dots, 1\}} p_{interp}(r)$$
$$p_{interp}(r) = \max_{\tilde{r}: \tilde{r} \ge r} p(\tilde{r})$$

Performance Measures

- Average Orientation Similarity

$$AOS = \frac{1}{11} \sum_{r \in \{0, 0.1, \dots, 1\}} \max_{\tilde{r}: \tilde{r} \ge r} s(\tilde{r})$$

$$s(r) = \frac{1}{|\mathcal{D}(r)|} \sum_{i \in \mathcal{D}(r)} \frac{1 + \cos \Delta_{\theta}^{(i)}}{2} \delta_i$$

Proposal Recall Results (2D)

Proposal Recall Results (3D)

- 0.25 IoU, moderate data

- Proposal Generation Runtime: ~ 2s for 2K proposals

Summary of Key Results

- Hybrid approach using Lidar:
 - stereo PC for road region classification
 - lidar point for plane fitting and inferencing
- Proposal Recall:
 - Hybrid good for small objects (pedestrian, cyclist) and far objects.
 - Highest 3D Recall with Hybrid, but 2D Recall is better with stereo.
- Detection and Localization:
 - Stereo works best on 2D detection and Easy set for 3D detection.
 - Hybrid is best combination for 3D tasks on Moderate and Hard sets (Highest AP, ALP).

- Network design
 - Joint BB and OR (multi-task loss) results in boost in AOS, not much for AP(2D)
- Contextual branch
 - Highest 2D AP and AOS for car. (by small margin)
 - Claims for pedestrian and cyclist, didn't work out due to the number of weights (2x model for contextual branch and limited data for pedestrian and cyclist)
- RGB-HHA stream
 - RGB-HHA requires more GPU memory, so used 7-layer VGG ConvNet weights
 - Improvement for both 2D (~0.5%) and 3D detection (~ 5-10%) than just RGB
 - 3D detection highest at 7 layer RGB-HHA with hybrid, (better than 16 layer RGB input)
- Ground Plane
 - Using ground truth planes didn't improve much for stereo
 - Only improves pure lidar approaches. (Good ground plane estimation needed for pure lidar based detection)

TABLE 4: **Object detection (top)** and **orientation estimation (bottom) results on KITTI's validation set**. Here, ort: orientation regression loss; ctx: contextual information; cls: class-specific weights in proposal generation. All methods use 2K proposals per image. VGG-16 network is used.

Metric	Method	ort	ctx	cls	Cars			Pedestrians			Cyclists		
					Easy	Moderate	Hard	Easy	Moderate	Hard	Easy	Moderate	Hard
AP _{2D}	SS [7]				75.91	60.00	50.98	54.06	47.55	40.56	56.26	39.16	38.83
	EB [11]				86.81	70.47	61.16	57.79	49.99	42.19	55.01	37.87	35.80
	Ours			~	92.18	87.26	78.58	72.56	69.08	61.34	90.69	62.82	58.26
		1		\checkmark	92.67	87.52	78.78	72.42	69.42	61.55	85.92	62.54	57.71
		1	\checkmark		92.76	87.30	78.61	73.76	66.26	63.15	85.91	62.82	57.05
		1	\checkmark	\checkmark	93.08	88.07	79.39	71.40	64.46	60.39	83.82	63.47	60.93
AOS	SS [7]	3	102		73.91	58.06	49.14	44.55	39.05	33.15	39.82	28.20	28.40
	EB [11]				83.91	67.89	58.34	46.80	40.22	33.81	43.97	30.36	28.50
	Ours			\checkmark	39.52	38.24	34.01	34.15	33.08	29.27	63.88	43.85	40.36
		1		\checkmark	91.46	85.80	76.73	62.25	59.15	52.24	77.60	55.75	51.23
		\checkmark	\checkmark		91.22	85.12	75.74	61.62	55.01	52.14	74.28	53.96	49.05
		\checkmark	\checkmark	\checkmark	91.58	85.80	76.80	61.57	54.79	51.12	73.94	55.59	53.00

Contributions

- Spatial information is far more important than appearance for generating good proposals and detection/localization in 3D
 - Deep hierarchical appearance features <<<< spatial features for 3D proposals
 - HHA, which encodes spatial information, significantly improves overall 3D detection

- Proposal Generation for hard objects
 - Even if sparse, very useful in terms of proposal generation for Small and Far objects (lidar accuracy > density of data)

Shortcomings/Improvements

- Handcrafted features -> Can DNN learn these features? (RPN)
- Knowledge of the prior data
- Relies a lot on pre-processed data (Stereo Disparity, Ground plane)
- Not yet fast enough for on-road detection.
 (~0.83 hz for proposals only, 0.5 hz for forward pass)
- Increase in model size (context) to performance is questionable
- Kitti has no 3D detection test -> contribution for our own dataset.
- Lots of room for improvement in 3D detection for cyclists