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1. Motivation
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Motivation for Modelling IMU Noise
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Figure: From Gyro Measurements to Orientation
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Motivation for Modelling IMU Noise: Example

Gyro Integration: nonlinear motion, noise, bias

Gyro Measurements
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Figure: Error from integrating Gyro Measurements without dealing with noise
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Motivation for Modelling IMU Noise: IMU Noise

Components
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Fig. 1. Inertial sensor model with a deterministic and a random component.
Here, the true angular rates @ are corrupted with deterministic errors,
for example a scale factor that varies with temperature, as well as non-
deterministic errors, such as additive broadband noise. This report presents
a method to identify noise processes according to their contribution to the
angular increments 2.

Figure: IMU Noise Components
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Motivation for Modelling IMU Noise: Types of IMU Noise

Quantization Noise

Angle / Velocity Random Walk Noise

Correlated Noise

Bias Instability Noise

Rate / Acceleration Random Walk Noise
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2. Power Spectral Density
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Fourier Transform




Power Spectral Density (PSD): Naming

o Power: refers to the fact that PSD is the mean-square value of the
signal being analyzed

o Spectral: refers to the fact PSD is a function of frequency, it
represents distribution of a signal over a spectrum of
frequencies

o Density: refers to the fact that the magnitude of PSD is
normalized to a single hertz bandwidth.
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Power Spectral Density (PSD): Form

If the signal being analyzed is a Wide-Sense Stationarity (WSS) discrete
random process, according to the Wiener-Khinchin theorem the PSD
is defined as:

[e.9]

P(f)= Y Ru(m)exp(—j2rfm) (1)

m=—0o0

Where R.«(f) is the Autocorrelation function of the random process
X(t) and 7 is the time lag:

Rao(f) = E[X(£)X(t —7)] (2)
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Wide Sense Stationarity (WSS)

o A Random Process is Stationary if its statistical properties do not
change in time

@ WSS is also known as Weak-Sense Stationarity, Covariance
Stationarity or Second-Order Stationarity.

@ The main thing to know is a random process is WSS if its mean and
its correlation function do not change by shifts in time.
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Autocorrelation Function

Autocorrelation is the degree of similarity between a given time series
and a lagged version of itself over successive time intervals

Roc(f) = EIX()X(t — 7)] (3)

Auto Correlation Process of a Sine Wave with a Limited Length
R(7)
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y(t)=x(t)

Figure: Autocorrelation in Action
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Relationship between PSD and FT

@ In most practical situations, the PSD of a random process is not
available.

@ Can estimate a given signal’s power spectral density by taking
magnitude squared of its Fourier transform as the estimate of the

PSD

One form is:

2

< _]27Tkn>
Z Xp €XP
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Power Spectral Density

If we compare DFT

X (Fe)l = Nle[n] exp (—j2mnk/N) (5)
And PSD (estimate) "~
1= i
P(f) = nZ::Ox[n] exp (—j27fin) (6)
You have:
G XA 7

P(fx) = N | X (k)|
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Power Spectral Density: Color of Noise
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Power Spectral Density

In summary:

o DFT # PSD

e DFT: shows the spectral content of the signal (amplitude and phase
of harmonics)

@ PSD: describes how the power of the signal is distributed over
frequency by performing the mean-square on the signal value.
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3. Allan Variance
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Allan Variance

Also called a Two-Sample Deviation, or square-root of the Allan
Variance, where:

1, _ _
‘75(7') = §<(Yn+1 - )/n)2> (8)
1
= p<(}/n+2 — 2¥n11+yn)?) (9)
Where 7 is the observation period, ¥, is the n-th fractional frequency

average over the observation time 7. The samples are taken with no
dead-time between them, which is achieved by letting time period T = 7.
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Characterize IMU Noise with Allan Variance

1. Acquire time series data on gyroscope or accelerometer

2. Set average time to be 7 = mmg, where m is the averaging factor.
The value of m where m < (N —1)/2.

3. Divide time history of signal into clusters of finite time duration of
T = M7

T (Stride)

T=3Ty

m=3

Output

Overlapping Samples

Time
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Characterize IMU Noise with Allan Variance

4. Once clusters are form, compute the Allan Variance

e Calculate 8 corresponding to each gyro output sample, this can be
accomplished as in.

0(t) = /tQ(t')dt’ (10)

e Once N values of 8 have been computed, calculate the Allan Variance
o2 represents as a function of 7 where (-) is the ensemble average.

2 1

g = ——
272

<(0k+2m — 2m + ak)2> (11)
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Characterize IMU Noise with Allan Variance

5. Calculate Allan Deviation (AD) value for a particular 7. This can
be obtained simply by square rooting the Allan Variance (AVAR).
This result will now be used to characterize the noise in a gyroscope.

AD(r) = \/AVAR(7) (12)
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Characterize IMU Noise with Allan Variance
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Figure: Characteristics of an Allan Deviation Plot (For Gyroscope)
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Characterize IMU Noise with Allan Variance
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Figure: Gyrometer Noise Characterization
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Characterize IMU Noise with Allan Variance

Accelerometer X/Y/Z Allan Deviation (Sigma) Chart
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Figure: Accelerometer Noise Characterization
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4. IMU Noise Model
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IMU Noise Model

The standard noise model:

z=x+v (13)
X—ix—l—w (14)
=

Where:
@ z is the modelled noise process

@ x is the slowly varying process with correlation time 75, “driven” by
another independent white noise w.

@ v is the white noise component
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IMU Noise Model: Discrete version

Algorithm 1 Discrete-Time Equivalent of the Standard Noise

Model (1a)
init:
”v%d <« iav% > assuming v is band-limited to ﬁ
o'bzd <« Ata'bz > assuming 7, > At
O, < exp (—%At)
0 if % = 0 (by definition)

X0 < 2 .
N (0, U";b) otherwise

for k < 1 to n do
wi < N (0. a3,), v < N (0,05,
X < Dgxg—1 +wy
Zk < Xg + Vg

end for

Figure: IMU Noise Model: Discrete version
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5. IMU Pre-Integration
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IMU Pre-Integration

Realtime is difficult as map and trajectory grows overtime, there are
generally 3 approaches towards realtime operation:

e PTAM
e Marginalization (fixed-lag smoothing)

o Filtering

But PTAM has a keyframe limit, filtering and marginalization commit to a
linearization point when marginalizing which introduces drift and potential
inconsistencies.
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IMU Pre-Integration: Bundle Adjustment (structured)

Where am I?
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Figure: Bundle Adjustment

IMU Noise and Characterization June 20, 2017 31/38



IMU Pre-Integration: Bundle Adjustment (structured)

Reprojection error il =m ‘
ezm_[tvjjﬂ where LV,]PmKR[h -C]m m=H
minimize {J{ 4.6, %)/ w (R,C,X)} |
RCX I 7 (R,C,X)/w(R,C,X)

= minimize : Quaternion parameterization
q,C.X
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IMU Pre-Integration:

Camera Frames

Y
3D Landmark

IMU I\/Iog:surcmonts

Approach

P

Keyframes

Preintegrated IMU Factor

Structureless Projection Factor

Fig. 4: Left: visual and inertial measurements in VIN. Right: factor graph in
which several IMU measurements are summarized in a single preintegrated
IMU factor and a structureless vision factor constraints keyframes observing

the same landmark.
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Fig. 5: Different rates for IMU and camera.
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IMU Pre-Integration: Key things to note

o Avoid repeated integration by defining relative motion increments
@ Assume bias is known and constant

o Make Bundle Adjustment problem structureless by “Lifting” the
cost function
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IMU Pre-Integration

Fig. 6: Left: two images from the indoor trajectory dataset with tracked
features in green. Right: top view of the trajectory estimate produced by our
approach (blue) and 3D landmarks triangulated from the trajectory (green).

Figure: IMU Pre-integration Results
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IMU Pre-Integration: Results
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Fig. 7. Comparison of the proposed approach versus the ASLAM al-
gorithm [9] and an implementation of the MSCKF filter {20]. Relative
errors are measured over different segments of the trajectory, of length
{10, 40, 90, 160, 250, 360}m, according to the odometric error metric in [46].

Figure: IMU Pre-integration Results
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Questions?
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Homework

1. What are the definitions of these terms?

Quantization Noise

Angle / Velocity Random Walk Noise
Correlated Noise

Bias Instability Noise

Rate / Acceleration Random Walk Noise

N

. Simulate an IMU using the standard noise model

w

. Plot Fourier Transform and Power Spectral Density of simulated IMU

I

. Extract the IMU Noise characteristics using Allan Variance
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