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* Overview

* Factor Graphs

* Least Squares

* Nonlinear Least Squares

 NLLS — extended to Manifolds!
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OVERVIEW

* SLAM is an optimization problem
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* Given many measurements, what is the value of the parameters we are

trying to estimate?
* Overdetermined system

* Want to estimate the state, using the incoming measurements

e Nonlinear
e SE(3) or SE(2)

WATERLOO | ENGINEERING

p(x | z)

p(X1,..., XN | Z1,.-.,2K)

P(X1:N|31:K)-
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*Independent
* Previous sensory information does not affect the next reading

* |dentically Distributed
* Sensor noise distribution is unchanged between samples
* Gaussian
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OVERVIEW | LIKELIHOOD AND POSTERIOR

e Likelihood
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LO;x1,...,2,) = f(x1,29,...,2, | )

e Posterior

p(XI:N|Zl:K)

likelihood prior

-

P(Z1.x [X1:3) - P

p(zl:K)
N——

normalizer
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e ML — Maximum Likelihood

éML(fD) = argmax f(z | 0) {émle} C {arg max E(Q; T1,...,Tn)}
0 0O

* MAP — Maximum A Posteriori

Ouap (z) = argmax f(0 | z) = arg max f10)90) = argmax f(z | 0) g(0)

9 B PO
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* Probabilistic model which illustrates the factorization of a function
* Highlights conditional dependence between random variables
* Bipartite — graph has two distinct nodes

e Classified into variables and factors
* Connected together by edges

* Excels in problems such as SLAM or SFM
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* Variables are the parameters that we are looking to optimize.
* For SLAM: the robot (and landmark) poses.

* Factors are probability statements
* Highlight the constraints between variables (conditional dependence)
* Derived from measurement or mathematical fundamentals
* For SLAM: odometry, reprojection error, GPS measurements, etc.
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* X{,X,,X3 are robot poses over 3 time steps
* fo(xq) is the prior

* Unary factor
* f1, [> are odometry measurements

* Binary factor
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fa(xy, x5)
5 o XLq
J -
f5(x5,722) @ @ f3(r3,74)
fo(z1) fi(xy, x2) fa(z2, x3)
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* Let’s draw a factor graph with:
* 3 timesteps
* 2 landmarks
* Odometry
* LIDAR measurements to landmarks
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* The value of the factor graph is the product of all factors.

f(X1, X2, X3) = | | fi¥0)

* Maximizing the value is equivalent to the MAP estimation.
* The prior is already included as a factor.
e Recall:

émAP(.’L‘) = argénax f(z | 6)g(6)
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* The graph describes the posterior density over the full trajectory of the
robot

* The graph does not contain a solution
* The graph is a function, applied to the parameters

* An initial guess + nonlinear least squares can be used to find the MAP
estimate for the trajectory
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* The graph consists of:
* 100 poses
* 30 landmarks

* Using GTSAM with an initial
guess solves for the full pose
estimate of the robot and
landmarks

 Also includes covariances
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FACTOR GRAPHS | EXAMPLE
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e Batch Estimation

e Optimize over all poses in the trajectory
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* Sliding window
e Optimize only over poses in the window
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* Sliding window
e Optimize only over poses in the window

e All previous information is encoded in as a prior
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*Visual Odometry
* Pose constraints provided by tracking features
*Visual SLAM

e Extension of VO, to observing 3D points with mapping and loop
closure

*Fixed-lag Smoothing and Filtering
* Recursive estimation — only require a subset of the poses
* Can marginalize for online estimation

eDiscrete Variables and Hidden Markov Models
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* Purpose: to solve an overdetermined system of equations.

* Review:

A

©® = arg min S(O)
®

S©) =3y - Y Xi6,)* = |ly - X©|
i=1 j=1

SO)=yTy-20"XTy +0'XTX0

(X'X)e = X'y
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eLinear: * Nonlinear:
» y=Pix+ P, » y = efr
. v — 2
y = p1x _ 1 (ST i)
Y= 27T €
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* Not all factors are linear wrt the parameters.
 Odometry, reprojection error, etc.

*Main idea: linearize model about current parameters and
refine

K
e Let us work through the derivation: |x* = argmax H p(z|Xx)
k=1
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* The measurement (and therefore error) can be expressed as (Gaussian

Assumption)

* Error has zero mean, with Information Matrix 0,

ar gmax H exp|—

k=1

(hi(x) — zx) " Q. (hy(x) — z1)]

* Remove the minus: (does this equation look familiar)?

argmm Z hy(x

Qk(hk (X) — Zk)
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*Let e (X) = hk(X) — Z

K
* Therefore, the argument of minimization is: | F(x) = Z er(x)! Qrern(x)
k=1 v g

ek (x)

* We can take the first-order Taylor Approximation of the error function
* Taken about the initial guess

. is the Jacobian at the guess. o
i 8 er (X + Ax) = e + JrAx
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* Inserting this into the error function yields:
Fx+Ax) = (hy(x+ Ax) —z,)" Qp(hy(x + Ax) — z;)

~ (JkAX—f—hk(i) —Zk)TQk(JkAX—f—hk(f() —Zk)

* Substitute error definition hy(X) — z; = e

= (J;EAX -+ ek)TQk(JkAX -+ ek.)
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* Multiplying the terms and expanding yields:

= Ax! JngJk AxX + 2 e{QkJ;g AX + egﬂkek
N —’ N —’

Hy b

* Which looks quite familiar!

— Ax'H.Ax + QbEAx + engek

* We can solve this!
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* The error function is the sum over all timesteps

e Expressed as:
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K
F(x+Ax) ~ » Ax'HpAx - 2bj Ax+ e} Qe

k=1
- K ] - K ] - K ]
= Ax?! H.| Ax + 2 bl | A 0
— X L X + L. X + e, dler
k=1 _ k=1 _ k=1 |
N e’ N e’ N ~ d
H bT c
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* The final step is to take the derivative, and set to zero.

O(Ax' HAx — 2bAX + ¢)
0AX

= 2HAx —2b

* This yields: HAxx = b

* And the next iteration occurs at: x*x = x + AX"
* Until the convergence condition is met
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* This is the Gauss-Newton algorithm.

 However, sometimes Gauss-Newton can lead to worse estimates

* Levenberg-Marquardt is a damped (1) version of the Gauss-Newton

algorithm
* Introduces contingency to recover from a worse estimate

 As A moves to oo, Ax™ moves to 0
sk
e Controls size of increments (H + )\I)AX

b
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* Both SLAM and Bundle Adjustment have a characteristic structure
* Sparsity
* Only non-zero between poses connected by a constraint
e = 2x # of constraints + # of nodes

*\We can exploit this structure to solve | HAxx = b
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*From: er(xXx+ Ax) = e, + JLAx

* The Jacobian J,, can be expressed as:

J. = (0...0Jk1 o Jp -0 - qu()...())
*Each Ji, = 65,(::? corresponds to the derivative wrt the nodes

connected by the kth edge
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* By setting

* H, = J’{Q;LJK

® bk_ = J;{lek

(

\

']k1 lek
Jiﬂkek

Jg ﬂkek

q

)
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* This can now be solved by Sparse Cholesky Factorization

* Cholesky decomposition:|A = LLT

Ax =D . LL'x=b - Ly=Db . LTx =y

*Solvers:
* (CSparse
e CHOLMOD
* Preconditioned Gradient (PCG)
* Only if system is too large
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* The previous derivation assumes the parameters are Euclidean
* Not true for SLAM
* Pose estimates are SE(3)

*Box-plus and box-minus i A

S KR" O, 0
:SxS >R fp ]
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* Recall: taking Taylor expansion of error near initial guess

* Now, we must look at a perturbation
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h;, (X B Ax)

2

hy (X) +

Ohy, (X B Ax)

OAX

Ax=0

"
Jr
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* Replace addition with box plus, and subtraction with box-minus
Fx+Ax) = (hy(x+ Ax) —z,)" Qp(hy(x + Ax) — z;)

* Substitute error definition with box-plus and box-minus

ék(X) — ék(ik? Zk) = ik Zjl. — hk (X) Z].
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* The Jacobian takes on the form:

( )

v OAX; A%X=0 OAX; A%=0
\ A B, )

* The remaining steps are just an extension of the Euclidean derivation

e Solution does depend on implementation of box-plus and box-
minus

o~

HAX* = —b. x* = xHAX"
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* Linearized manifold representation has the same structure as
Euclidean case

* Steps:
 Compute set of increments in local Euclidean approximation

*Libraries such as GTSAM and g?o incorporate this
functionality, as they are designed for SLAM
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* Draw a factor graph with the following:
* 5 timesteps
* 6 landmarks
* GPS measurements at each timestep
* Odometry

IMU (at same frequency as odometry)

LIDAR measurements to each landmark
* Reprojection error
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