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OUTLINE

•Overview

•Factor Graphs

• Least Squares

•Nonlinear Least Squares

•NLLS – extended to Manifolds!



OVERVIEW

•SLAM is an optimization problem

•Given many measurements, what is the value of the parameters we are 
trying to estimate?

• Overdetermined system

•Want to estimate the state, using the incoming measurements

• Nonlinear

• SE(3) or SE(2)



OVERVIEW | ASSUMPTIONS

• Independent

• Previous sensory information does not affect the next reading

• Identically Distributed

• Sensor noise distribution is unchanged between samples

• Gaussian



OVERVIEW | LIKELIHOOD AND POSTERIOR

• Likelihood

•Posterior



•ML – Maximum Likelihood

•MAP – Maximum A Posteriori

OVERVIEW | ML AND MAP



FACTOR GRAPHS

•Probabilistic model which illustrates the factorization of a function

•Highlights conditional dependence between random variables

•Bipartite – graph has two distinct nodes

• Classified into variables and factors

• Connected together by edges

•Excels in problems such as SLAM or SFM



FACTOR GRAPHS | VARIABLES AND FACTORS

• Variables are the parameters that we are looking to optimize.

• For SLAM: the robot (and landmark) poses.

• Factors are probability statements

• Highlight the constraints between variables (conditional dependence)

• Derived from measurement or mathematical fundamentals

• For SLAM: odometry, reprojection error, GPS measurements, etc.



FACTOR GRAPHS | EXAMPLE

• 𝑥1, 𝑥2, 𝑥3 are robot poses over 3 time steps

• 𝑓0 𝑥1 is the prior

• Unary factor

• 𝑓1, 𝑓2 are odometry measurements

• Binary factor



FACTOR GRAPHS | EXAMPLE – LOOP CLOSURE



FACTOR GRAPHS | BOARD EXAMPLE

• Let’s draw a factor graph with:

• 3 timesteps

• 2 landmarks

• Odometry

• LIDAR measurements to landmarks



FACTOR GRAPHS | ANSWER



FACTOR GRAPHS | GRAPHS VS. VALUE

•The value of the factor graph is the product of all factors.

•Maximizing the value is equivalent to the MAP estimation.

• The prior is already included as a factor.

• Recall:



FACTOR GRAPHS | NOTES

•The graph describes the posterior density over the full trajectory of the 
robot

•The graph does not contain a solution

• The graph is a function, applied to the parameters

•An initial guess + nonlinear least squares can be used to find the MAP 
estimate for the trajectory



FACTOR GRAPHS | SLAM APPLICATION

•The graph consists of:

• 100 poses

• 30 landmarks

•Using GTSAM with an initial 
guess solves for the full pose 
estimate of the robot and 
landmarks

• Also includes covariances



FACTOR GRAPHS | EXAMPLE



FACTOR GRAPHS | BATCH ESTIMATION VS. SLIDING WINDOW

• Batch Estimation

• Optimize over all poses in the trajectory



•Sliding window

• Optimize only over poses in the window

FACTOR GRAPHS | BATCH ESTIMATION VS. SLIDING WINDOW



•Sliding window

• Optimize only over poses in the window

• All previous information is encoded in as a prior

FACTOR GRAPHS | BATCH ESTIMATION VS. SLIDING WINDOW



FACTOR GRAPHS | OTHER APPLICATIONS

•Visual Odometry

• Pose constraints provided by tracking features

•Visual SLAM

• Extension of VO, to observing 3D points with mapping and loop 
closure

•Fixed-lag Smoothing and Filtering

• Recursive estimation – only require a subset of the poses

• Can marginalize for online estimation

•Discrete Variables and Hidden Markov Models



LEAST SQUARES

•Purpose: to solve an overdetermined system of equations.

•Review: 



LINEAR VS NONLINEAR LEAST SQUARES

• Linear:

• 𝑦 = 𝛽1𝑥 + 𝛽2
• 𝑦 = 𝛽1𝑥
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•Nonlinear:
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NONLINEAR LEAST SQUARES

•Not all factors are linear wrt the parameters.

• Odometry, reprojection error, etc.

•Main idea: linearize model about current parameters and 
refine

• Let us work through the derivation:



NONLINEAR LEAST SQUARES | DERIVATION

•The measurement (and therefore error) can be expressed as (Gaussian 
Assumption)

• Error has zero mean, with Information Matrix Ω𝑘

•Remove the minus: (does this equation look familiar)?



NONLINEAR LEAST SQUARES | DERIVATION

• Let

•Therefore, the argument of minimization is:

•We can take the first-order Taylor Approximation of the error function

• Taken about the initial guess

• 𝐽𝑘 is the Jacobian at the guess.



NONLINEAR LEAST SQUARES | DERIVATION

• Inserting this into the error function yields:

•Substitute error definition 



NONLINEAR LEAST SQUARES | DERIVATION

•Multiplying the terms and expanding yields:

•Which looks quite familiar!

•We can solve this!



NONLINEAR LEAST SQUARES | DERIVATION

•The error function is the sum over all timesteps

• Expressed as: 



•The final step is to take the derivative, and set to zero.

•This yields: 

•And the next iteration occurs at:

• Until the convergence condition is met 

NONLINEAR LEAST SQUARES | DERIVATION



•This is the Gauss-Newton algorithm.

• However, sometimes Gauss-Newton can lead to worse estimates

• Levenberg-Marquardt is a damped (𝜆) version of the Gauss-Newton 
algorithm

• Introduces contingency to recover from a worse estimate

• As 𝜆 moves to ∞, Δ𝑥∗ moves to 0

• Controls size of increments

GAUSS-NEWTON AND LEVENBERG-MARQUARDT



STRUCTURE

•Both SLAM and Bundle Adjustment have a characteristic structure

• Sparsity

• Only non-zero between poses connected by a constraint

• = 2x # of constraints + # of nodes 

•We can exploit this structure to solve



STRUCTURE | JACOBIAN

•From:

•The Jacobian 𝐽𝑘 can be expressed as:

•Each                       corresponds to the derivative wrt the nodes 
connected by the kth edge



STRUCTURE | HESSIAN

•By setting

• W

• s



•This can now be solved by Sparse Cholesky Factorization

• Cholesky decomposition:

•Solvers:

• CSparse

• CHOLMOD

• Preconditioned Gradient (PCG)

• Only if system is too large

STRUCTURE | SOLVING



NLLS ON SMOOTH MANIFOLDS

•The previous derivation assumes the parameters are Euclidean

• Not true for SLAM

• Pose estimates are SE(3)

•Box-plus and box-minus



NLLS ON SMOOTH MANIFOLDS | PROBLEM STRUCTURE

•Recall: taking Taylor expansion of error near initial guess

• Now, we must look at a perturbation



NLLS ON SMOOTH MANIFOLDS | SUBSTITUTION

•Replace addition with box plus, and subtraction with box-minus

•Substitute error definition with box-plus and box-minus



NLLS ON SMOOTH MANIFOLDS | SOLVING

•The Jacobian takes on the form:

•The remaining steps are just an extension of the Euclidean derivation

• Solution does depend on implementation of box-plus and box-
minus



NLLS ON SMOOTH MANIFOLDS | NOTES

• Linearized manifold representation has the same structure as 
Euclidean case

•Steps:

• Compute set of increments in local Euclidean approximation

•Libraries such as GTSAM and g2o incorporate this 
functionality, as they are designed for SLAM



HOMEWORK

•Draw a factor graph with the following:

• 5 timesteps

• 6 landmarks

• GPS measurements at each timestep

• Odometry

• IMU (at same frequency as odometry)

• LIDAR measurements to each landmark

• Reprojection error
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