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Motivation for using Visual Odometry

@ Wheel odometry is affected by wheel slip
@ More accurate compared to wheel odometry
@ Can be used to complement GPS, IMUs, Lidar

o Particularly useful in GPS-denied environments
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Visual Odometry Assumptions

o Sufficient lllumination in the environment

@ Dominance of static scene over moving objects

@ Enough texture to allow apparent motion to be extracted
°

Sufficient scene overlap between consective frames
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Feature Based vs Direct

Feature-Based Direct
Input Input
Images Images
Extract & Match LK
Features 3
(SIFT / SURF / BRIEF /...)
abstract images to feature observations keep full image
Track: Track:
min. reprojection error )\min. photometric error
/> (point distances) (intensity difference)
Map: ap:
est. feature-parameters est. per-pixel depth
(3D points / normals) (semi-dense depth map)

Chiuso '02, Nistér ‘04, Eade '06, Klein '06, Matthies 88, Hanna ‘91, Comport ‘06,
Davison 07, Strasdat 10, Mur-Artal '14, .... Newcombe "11, Engel '13, ...
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Feature Based vs Direct

Feature-Based Direct

can only use & reconstruct corners  can use & reconstruct whole image

faster slower (but good for parallelism)
flexible: outliers can be removed inflexible: difficult to remove
retroactively. outliers retroactively.

robust to inconsistencies in the
model/system (rolling shutter).

decisions (KP detection) based on decision (linearization point) based
less complete information. on more complete information.

no need for good initialization.
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Stereo Matching
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Stereo Matching - Matching Cost

A Matching Cost measures the similarity of pixels, examples:
@ Absolute Intensitiy Difference (AD):

“L(XJ/)_IR(va)‘ (1)
e Squared Intensitiy Difference (SD):
(/L(ny) - IR(Xay))z (2)
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Stereo Matching - Disparity Computation

The corresponding pixel is chosen in a way that the similarity between the
pixels is high ("dissimilarity” = cost). For example the "Winner Takes All"
algorithm, where for every pixel select the disparity with the lowest cost.

i (x,y) = Ir(x +d,y)| (3)
5
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Stereo Matching - Example Algorithm

Using the "Winner Takes All" algorithm the disparity map looks like this:

Left Camera Image Optimal Result Actual Result (Bad!)

The disparity map is very noisy, due to a low signal to noise ratio (SNR).
To remedy this we use Cost Aggregation where we do not compare single
pixels but small patches.
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Stereo Matching - Cost Aggregation

Using a "matching window" around the pixel of interest, and apply the
sum of absolute intensity differences (SAD):

Z |/R(X7y)_IL(X+d7y)| (4)

(x,y)eW
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Stereo Matching - Cost Aggregation

Examples for such area-based matching costs:
e Sum of absolute differences (SAD):

Z “R(Xﬁy)_lL(X"i_d:y)’ (5)

(x,y)ew

e Sum of square differences (SSD):

Z (IR(Xay) - IL(X + day))z (6)

(x,y)ew
e Normalized Cross Correlation (NCC):

> (xy)ewllR(x,y) — I % [I(x+d,y) —I1]
\/Z(X’y)GW[/R(X’y) G \/Z(x,y)ew[/L(x +d,y) = IJ?

(7)
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Stereo Matching - Cross Correlation

If we use both "Winner-Takes-All" algorithm and an area based matching
cost (SAD) we get:

Left Camera Image Optimal Result Actual Result (Still many errors)
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Stereo Matching - Problems with Fixed Windows

The area-based approach has other problems:
@ Assumes constant depth with in the window
Repetitive textures

(]
@ Uniform areas
(]

Thin structures
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Stereo Matching - Cross Correlation Summary

Despite drawbacks of area-based approaches, cross correlation (WTA with
SAD) is often adpoted in practice. Because:

@ Simple
o Fast

@ Low memory requirements

Memory requirement is low, because we need no additional information
except the disparity for every pixel.
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Stereo Matching - Inverse Depth Estimation

@ Montiel, JM Martnez, Javier Civera, and Andrew J. Davison. " Unified
inverse depth parametrization for monocular SLAM.” Robotics:
Science and Systems, 2006.

o Civera, Javier, Andrew J. Davison, and JM Martinez Montiel.
"Inverse depth parametrization for monocular SLAM." IEEE
transactions on robotics 24.5 (2008): 932-945.
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Direct Dense VO - DTAM

@ DTAM: Dense Tracking and Mapping in Real-Time, Richard
Newcombe, Steven Lovegrove, Andrew Davison - ICCV 2011

@ Monocular Cameras

@ No feature extraction

@ Superior tracking performance than feature based methods

@ Uses GPU to speed up optimization

Figure 3. Incremental cost volume construction; we show the current inverse depth map extracted as the current minimum cost for each
pixel row d"™ = arg min, C(u, d) as 2, 10 and 30 overlapping images are used in the data term (left). Also shown is the regularised
solution that we solve to provide each keyframe inverse depth map (4th from left). In comparison to the nearly 300 x 10% points estimated
in our keyframe, we show the ~ 1000 point features used in the same frame for localisation in PTAM ([6]). Estimating camera pose from
such a fully dense model enables tracking robustness during rapid camera motion.
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| photometric cost
_ volume
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Keyframe pose For each frame m in the set of
narrow-baseline frames
m € Z(r) me
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Minimize the regularized energy functional:

Regularization term “Cost volume” data term

Pe = [ {oIvewl + 10 (u.w) Jau

Huber norm, to make the depth X
map smoother Integrate over each pixel

Inverse depth map
to minimize over Do not smooth edges

Coupling term
Non-convex! Approximate it: Enforce é=aas 8 — 0

Bea = [ {s@IVe@l+ 55 € - aw)’

+ AC (u, a(u)) }du
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Semi Dense Visual Odometry

@ J. Engel, J. Sturm, D. Cremers. Semi-Dense Visual Odometry for a
Monocular Camera. ICCV 2013.

@ Do not track low gradient pixels (the semi-part)

@ Probabilistic depth map representation (not in DTAM)

@ Real time in CPU!

original image semi-dense depth map (ours)

keypoint depth map [$] dense depth map [11]  RGB-D camera [ 16]

Figure 2. Semi-Dense Approach: Our approach reconstructs and
tracks on a semi-dense inverse depth map, which is dense in all
image regions carrying information (top-right). For comparison,
the bottom row shows the respective result from a keypoint-based
approach, a fully dense approach and the ground truth from an
RGB-D camera.
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Semi Dense Visual Odometry - Depth Estimation

@ Estimate a depth map for the current image (DTAM: Estimate the
depth map for the previous keyframe)

@ Propagate and refine the depth map from frame to frame (filtering
like) (DTAM: (Incremental) batch optimization over several frames)

@ One depth hypothesis (Gaussian) per pixel in the current image

Stereo Based Algorithm:
1. Use uncertainty criteria to select good pixels
2. Select adaptively a reference frame for each pixel

3. Do disparity search on the epipolar line
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Semi Dense Visual Odometry - Geometric Disparity Error

R - .
R -

Figure 5. Geometric Disparity Error: Influence of a small posi-
tioning error ¢; of the epipolar line on the disparity error €. The
dashed line represents the isocurve on which the matching point
has to lie. €, is small if the epipolar line is parallel to the image
gradient (left), and a large otherwise (right).
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Semi Dense Visual Odometry - Photometric Disparity Error

7 7
I, I,
€i{ €i{ e
SRR ‘
€x

S

Figure 6. Photometric Disparity Error: Noise €; on the image
intensity values causes a small disparity error €y if the image gra-
dient along the epipolar line is large (left). If the gradient is small,

the disparity error is magnified (right).

I\ = g’
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Semi Dense Visual Odometry - Pixel to Inverse Depth Error

Geometric Photometric

Observation variance of 02 = ag (52 + 0-2 )
the inverse depth d,0bs A(&m) A(I)

) Yt Searched inverse depth range
o= —
) ) — Searched epipolar line length
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Semi Dense Visual Odometry - Pipeline

1. Get a new frame

2. Estimate motion with coarse-to-fine iterative optimization against the
map

3. Predict the next depth estimate with the motion estimate

4. Select high gradient good pixels

5. Do disparity search with the largest baseline and within the prior

6. Sub-pixel refinement to produce depth estimate

7. Update depth estimate posterior

8. Gotol
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Semi Dense Visual Odometry - Results

Figure 9. RGB-D Benchmark Sequence fr2/desk: Tracked cam-
era trajectory (black), the depth map of the first frame (blue), and
the estimated depth map (gray-scale) after a complete loop around
the table. Note how well certain details such as the keyboard and
the monitor align.
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Semi Dense Visual Odometry - Results

Table 1. Results on RGB-D Benchmark
position drift (m/;)  rotation drift (deg/s)

ours [7] [£] ours [7] [£]
fr2/xyz 0.6 06 8.2 0.33 0.34 3.27
fr2/desk 2.1 2.0 - 0.65 0.70 -
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Large Scale Direct SLAM

@ J. Engel, T. Schops, and D. Cremers, "Lsd-slam: Large-scale direct
monocular slam,” in European Conference on Computer Vision, pp.
834849, Springer, 2014.

o Build large scale consistent maps in real time

o Novel direct tracking method that operates on sim(3), thereby
explicitly detecting scale drift

@ Probabilistic solution to include effect of noisy depth values into
tracking
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LSD SLAM - Pipeline

4 . N
Input Video
640x480 @ 30Hz

== SR

L

Tracking
SE(3) alignment
to current KF

Depth Estimation

»

Create
new KF

Current KF

D

Direct Methods in Visual Odometry

Map Optimization

Sim(3) pose-graph

Add to Map
Sim(3) alignment
to all nearby KFs

1

» Optional: FabMap for large loops
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LSD SLAM - Overview

e Tracking: continuously tracks new camera images

@ Depth map estimation: uses tracked frames to either refine or
replace current keyframe

o Map optimization: once a keyframe is replaced as tracking reference
(its depth map will no longer be refined further), it is incorporated
into the global map by the map optimization component.
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LSD SLAM - Direct Tracking

= [[r(€)II2

KF image KF depth

new frame

» minimize using Gauss-
Newton / LM Algorithm

» Coarse-to-fine + Huber
norm + statistical norm.
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LSD SLAM - Depth Estimation

image inverse depth inverse depth variance

» filter over many (small-baseline) stereo-correspondences.

» small baseline + epipolar constraint + prior
-> small search region (,,track “ instead of , detect )

» only use ,good” (sufficiently constrained) pixel.
» Edge-preserving smoothing

» Distance-based KF selection
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LSD SLAM - Global Mapping

> Direct Tracklhg with scale (on -Slm(3))”
B(E) = 3 (1100 = ()™ () = Da(x))
%@3} xE
sim(3) with X' 1= w(x, Dl(x), g) (warped point)

+ GN optimization + multi-resolution + Huber norm + statistical norm.

» Optimize pose-graph on Sim(3)
E€w - &aw) = Z (&z‘j Oﬁi_ulf OEjW)TEi_jl(Ez‘j °€i_u%* ijw)'

(Eijszij)eg
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LSD SLAM - Results

B LSD-SLAM (#KF) 9] [15] [14] [7]
% 2 desk 452 (116) 1350  x 177 9.5

fr2/xyz 1.47( 8) 3.79 24.28 1.18 2.6

sim/desk 0.04 (39) 1.53 - 0.27 -

sim/slowmo 0.35 (12) 2.21 - 0.13 -

@ [9]: Semi-Dense VO

e [15]: Keypoint Based Mono SLAM
o [14]: Direct RGB-D SLAM

e [7]: Keypoint based RGB-D SLAM
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Semi-Dense Visual Odometry (SVO)

o C. Forster, M. Pizzoli, and D. Scaramuzza, "Svo: Fast semi-direct
monocular visual odometry,” in Robotics and Automation (ICRA),
2014 IEEE International Conference on, pp. 1522, IEEE, 2014.

@ Novel semi-direct VO pipeline that is faster and more accurate than
state of the art

@ Integration of a probabilistic mapping method that is robust to outlier
measurements
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SVO - Architecture

Motion Estimation Thread

1

Sparse Model-based !
I Image Alignment :
1

|

Last Frame +

b | Feature Alignment Map

)

1
1
Pose & Structure !
Refinement :

Feature Update

1
1
1
1
!
1
1 Extraction Depth-Filters
1
1
!
1
1
1

Initialize Converged?
Depth-Filters yes:
insert
________________ | new Point

Fig. 1: Tracking and mapping pipeline
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SVO - Important Note

“SVO uses feature-correspondence only as a result of direct motion
estimation rather than of explicit feature extraction and matching.

Thus, feature extraction is only required when a keyframe is selected to
initialize new 3d points.”
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SVO - Sparse Model Based Image Alignmen

P2
Fig. 2: Changing the relative pose Tyx—1 between the current and the
previous frame implicitly moves the position of the reprojected points in the
new image uj. Sparse image alignment seeks to find Tjx_; that minimizes
the photometric difference between image patches corresponding to the same
3D point (blue squares). Note, in all figures, the parameters to optimize are
drawn in red and the optimization cost is highlighted in blue.

Minimize the negative log-likelihood of the intensity residuals:

Tir-1= argmlin//ﬁp [SI(T,u)]du.
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SVO - Feature Alignment

SN

P2

Fig. 3: Due to inaccuracies in the 3D point and camera pose estimation,
the photometric error between corresponding patches (blue squares) in
the current frame and previous keyframes r; can further be minimised by
optimising the 2D position of each patch individually.

Minimize the photometric error of the patch in the current image with
respect to the reference patch in the keyframe r:

1 ;
uj = argmin | L(u)) —Ai-L(u) ||?, Vi
u;
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SVO - Pose and Structure Refinement

\ K4 . Y

Pie” obo

n
|
|
'
I
'
'
'

N /, \\\
" P3 °P3

Fig. 4: In the last motion estimation step, the camera pose and the structure
(3D points) are optimized to minimize the reprojection error that has been
established during the previous feature-alignment step.

Minimize reprojection error (motion only bundle adjustment):

|
Tew = argmn Z | wi = 7(Tipw wpsi) “2 .
k.w i
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@ The sparse model based image alignment and pose and structure
refinement seems redundant.

@ One could directly start establishing feature correspondence but the
processing time would be higher. Further some features could be
tracked inaccurately, the sparse image alignment step satisfies
implicitly the epipolar constraint and ensures that there are no
outliers.

@ One may also argue that the sparse image alignment would be
sufficient to estimate the camera motion, however the authors of SVO
found empirically that using the first step only results in a
significantly more drift compared to using all three steps together.
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SVO - Results
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Fig. 7: Comparison against the ground-truth of SVO with the fast parameter
setting (see Table and of PTAM. Zooming-in reveals that the proposed
algorithm generates a smoother trajectory than PTAM.
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SVO - Results

0.10 T T

:
0081 — Accurate — Fast _ — PT%%" M

roll-error [rad]

pitch-error [rad]

yaw-error frad]

H L
50 100 150 200 250

time [s]
Fig. 9: Attitutde drifts of SVO with fast and accurate parameter setting and
comparison against PTAM.

Pos-RMSE ~ Pos-Median ~ Rot-RMSE  Rot-Median

[m/s] [m/s] [deg/s] [deg/s]
fast 0.0059 0.0047 0.4295 0.3686
accurate 0.0051 0.0038 0.4519 0.3858
PTAM 0.0164 0.0142 0.4585 0.3808

TABLE II: Relative pose and rotation error of the trajectory in Figure
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SVO - Results

x-error [m]

y-error [m]

z-error [m]

time [s]

Fig. 8: Position drift of SVO with fast and accurate parameter setting and
comparison against PTAM.
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Direct Sparse Odometry (DSO)

J. Engel, V. Koltun, and D. Cremers, " Direct sparse odometry,” arXiv
preprint arXiv:1607.02565, 2016.

@ Proposes a Sparse + Direct method

o Continus optimization of the photometric error over a window of
recent frames including geometry and camera motion

@ Integrated photometric camera model: lens attenuation, gamma
correction, and known exposure times

@ Runs real time on CPU
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DSO - Sparse vs Dense Hessian Structure

@ In dense approaches, the main drawback of adding a geometric prior
is the introduction of correlations between geometry parameters,
which render a statistically consistent joint optimization in real time
infeasible.
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DSO - Sparse vs Dense Hessian Structure

Iip{:.t;u (diag) M pose-geo M geo (diag) ge0 [(JIT-dlag}|

Figure 2. Sparse vs. dense Hessian structure. Left: Hes-
sian structure of sparse bundle adjustment: since the geometry-
geometry block is diagonal, it can be solved efficiently using the
Schur complement. Right: A geometry prior adds (partially un-
structured) geometry-geometry correlations — the resulting system
is hence not only much larger, but also becomes much harder to
solve. For simplicity, we do not show the global camera intrinsic
parameters.
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Discussion

o Is front-end done? What more can we improve?
@ Is it realistic to aim for a front-end that could perform in:

e Poorly illuminated environments
o Textureless environments
o Low camera frame rate

@ What is our goal with gimbal VO?

Direct Methods in Visual Odometry July 24, 2017 47 / 47



