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OVERVIEW

•Residual

• Difference between the observed value and estimated value

•Cost/ Loss function is the function to be minimized

• Generally a function of the residual

•Camera residuals

• Formulation depends on indirect vs direct methods

• A value to be minimized, which can estimate the camera pose.



GEOMETRY | EUCLIDEAN SPACE

•Euclidean Space (𝑹3)

•Euclidean geometry describes:

• Lines

• Circles

• Angles

•Issue: ∞

• How do we represent points at infinity?



GEOMETRY | PROJECTIVE SPACE

•Euclidean Space + ideal points

• Ideal points: points at infinity.

• Now, 2 lines always meet in a point!

•Projective space is derived from 
Euclidean space by adding line @ infinity

•Points at infinity can be described using 
homogeneous coordinates



GEOMETRY | HOMOGENEOUS COORDINATES

•Homogeneous coordinates in 𝑹𝑛 written as an 𝑛 + 1 vector

• 𝑅2: 𝑥, 𝑦, 1 𝑇, 𝑅3: 𝑥, 𝑦, 𝑧, 1 𝑇

• Ideal points: 𝒙, 𝒚,… , 𝟎 𝑻

•What about scaled points?

• 𝑘𝑥, 𝑘𝑦, 𝑘 𝑇 is an equivalence class of 
𝑥

𝑘
,
𝑦

𝑘
, 1

𝑇
- (we’ll revisit why later!)

•Euclidean space can be extended to projective space using homogeneous 
vectors



GEOMETRY | TRANSFORMATIONS

•Euclidean Transform: Rotation + Translation

•Affine transform: Rotation + Translation + Stretching (linear scaling)

•For both Euclidean and Affine transforms, points at infinity remain at 
infinity

•What about a projective transform?



GEOMETRY | PROJECTIVE TRANSFORMATIONS

•What properties of an object are preserved?

• Shape?

• Angles?

• Lengths?

• Distances?

• Straightness?

•Projective transformation is any mapping that preserves 
straight lines. 



GEOMETRY | PROJECTIVE TRANSFORMATIONS…CONT

•Projective transformation is a mapping of the homogeneous coordinates

• Ideal points are not preserved

• Points at infinity are mapped to arbitrary points

•For computer vision, the projective space is convenient

• Treat 3D space as 𝑃3 instead of 𝑅3

• Images as 𝑃2

• Useful for practical applications – even though we know points at ∞
are our own construct



CAMERAS, PART 1 | PINHOLE CAMERA

•Also known as “camera 
obscura”

•First type of camera

• Light passes through an 
opening

• Image is reflected on the 
other side



CAMERAS, PART 1 | CENTRAL PROJECTION

•Cameras are a map between the 3D world and 2D image

• Projection: lose 1 dimension

•Can be mapped via central projection

• Ray from 3D point passes through camera center of projection (COP)

• Intersects image plane

• If 3D structure is planar, then there is no drop in dimension



CAMERAS, PART 1 | CENTRAL PROJECTION



CAMERAS, PART 1 | CENTRAL PROJECTION

Image Plane

𝒇 𝒇

•For convenience: can place image plane in front of COP



CAMERAS, PART 1 | CENTRAL PROJECTION

• In essence, central projection is just mapping 𝑃3 → 𝑃2

• The camera matrix P is a 3x4 matrix of rank 3

𝑥, 𝑦, 𝑤 𝑇 = 𝑃 𝑋, 𝑌, 𝑍, 𝑇 𝑇

• 𝑥, 𝑦, 𝑤 𝑇 are homogeneous coordinates of image space (𝑃2)

• 𝑋, 𝑌, 𝑍, 𝑇 𝑇 are homogeneous coordinates of 3D world (𝑃3)



CAMERAS, PART 1 | RAYS AND POINTS

•Ray passing through COP is a projected point in the image.

• Therefore, all points on ray can be considered equal.

• Rays are image points, and we can represent rays as homogeneous 
coordinates

•Need calibration to express relative Euclidean geometry between 
image and world.

• With a calibrated camera, can back-project 2 points in an image

• Can then determine angle between two rays



CAMERAS, PART 1 | MATRIX DERIVATION

• Let’s derive the camera matrix.

•Assumptions:

• Center of projection is origin (𝑅3)

•Using pinhole camera model:

• By similar triangles:

𝑋, 𝑌, 𝑍 𝑇 →
𝑓𝑋

𝑍
,
𝑓𝑌

𝑍
, 𝑓



CAMERAS, PART 1 | PINHOLE

0, 0, 0 𝑇

𝑋, 𝑌, 𝑍, 1 𝑇
𝑓𝑋

𝑍
,
𝑓𝑌

𝑍
, 𝑓

𝑇
•Recall: image 
plane is 
located at a 
distance 
equivalent to 
the focal 
length



•Mapping from 𝑃3 to 𝑃2 using similar triangles 

CAMERAS, PART 1 | PINHOLE

0, 0, 0 𝑇

𝑋, 𝑌, 𝑍, 1 𝑇

𝑓𝑋

𝑍
,
𝑓𝑌

𝑍
, 𝑓

𝑇



CAMERAS, PART 1 | CAMERA MATRIX

•With the Euclidean origin @ the COP:

• Central projection just becomes a linear map b/w homogenous 
coordinates

•Can be written as: 



•The previous equation assumes image coordinates at the principal 
point. 

•A more generic mapping is:

CAMERAS, PART 1 | CAMERA MATRIX



CAMERAS, PART 1 | CAMERA MATRIX

•𝐾 is the camera calibration matrix

• Can also add a skew parameter

•Can then express 

where 𝒙𝑐𝑎𝑚 is 𝑋, 𝑌, 𝑍, 1 𝑇, expressed in a coordinate frame at the 
COP.

s



CAMERAS, PART 1 | CAMERA MATRIX

•The world coordinate frame is not always expressed at COP.

• Example: a moving camera!

•Coordinate frames related 
through a rotation and 
translation



CAMERAS, PART 1 | CAMERA MATRIX

•The equation can now be expressed as:



CAMERAS, PART 1 | PROJECTIONS

•Forward projection: maps a point in 3D space to an image point

• 𝑥 = 𝑃𝑋

•Back projection: from a point 𝑥 in an image, we can determine the 
set of points that map to this point.

• Ray in space passing through the space

•How can we obtain the back projection?



CAMERAS, PART 1 | BACK PROJECTION

•Null space of C is the camera center

•We know 2 points on each ray:

• COP (𝑃𝐶 = 0)

• Image point (𝑃+𝑥), 𝑃+ = 𝑃𝑇 𝑃𝑃𝑇 −1

•Why is 𝑃+𝑥 the second point?

• It projects to x!

• 𝑃 𝑃+𝑥 = 𝐼𝑥 = 𝑥

•The ray is then the line connecting these two points. 



CAMERAS, PART 1 | LENSES

•Pinhole camera is ideal

• Not a true representation of 
a camera

•Need to correct for distortions

• Want images as if we were 
using a pinhole camera

•Distortion can be radial or 
tangential



Barrel Distortion Pincushion Distortion

CAMERAS, PART 1 | LENS DISTORTION



• Lens distortion occurs during 
initial projection onto image plane

• ෤𝑥, ෤𝑦 are ideal, 𝑥𝑑 , 𝑦𝑑 are actual

• ෤𝑟 is Euclidean distance

•𝐿(෤𝑟) is the distortion factor.

• Can be solved for through 
calibration

CAMERAS, PART 1 | LENS CORRECTION



MULTI-VIEW GEOMETRY | EPIPOLAR GEOMETRY

•Motivation: to search for corresponding points in stereo matching

•Baseline: Line joining camera centers

•Epipole: point of intersection b/w baseline and image plane

•Epipolar line: intersection of an epipolar plane with the image plane

•Epipolar plane: plane containing the baseline  



MULTI-VIEW GEOMETRY | EPIPOLAR CONSTRAINTS



MULTI-VIEW GEOMETRY | FUNDAMENTAL MATRIX

•Algebraic representation of epipolar
geometry

•𝐹 represents the mapping from 𝑃2 → 𝑃, 
through the epipolar lines.

•Two steps:

• Map point 𝑥 to 𝑥’

• Obtain 𝑙′ from joining 𝑥′ to 𝑒′



MULTI-VIEW GEOMETRY | FUNDAMENTAL MATRIX

•Properties:

• Correspondence: 𝑥′𝑇𝐹𝑥 = 0

• Transpose: If 𝐹 is the matrix for camera 𝑃, 𝐹𝑇 is the corresponding 
fundamental matrix for camera 𝑃′

• Epipolar lines: 𝑙′ = 𝐹𝑥, 𝑙 = 𝐹𝑇𝑥′

• 𝐹𝑒 = 0, 𝑒′𝑇𝐹 = 0

•Methods to solve: 7 point algorithm, 8 point algorithm, RANSAC…



MULTI-VIEW GEOMETRY | STEREO CAMERAS



REPROJECTION ERROR

•Summed squared distance between projections of 𝑋, and measured 
image points.

• Euclidean distance

• In 2 images



REPROJECTION ERROR | APPLICATIONS

•Fundamental matrix

• MLE of 𝐹 (assuming Gaussian noise) minimizes reprojection error

• ො𝑥, ෡𝑥′ are ideal points, and obtained from ො𝑥 = 𝑃𝑋.

• Both 𝑃 and 𝑋 can be modified to minimize this error.

–Recall:                           , and 𝑅, 𝑡 represent the camera pose in 
the world frame!

•Bundle adjustment

• Similar, except the intrinsic parameters can also be modified.



CAMERAS, PART 2 | PHOTOSITES

•Camera sensors consist of photosites

• Quantifies amount of light collected

• The digitized information is a pixel

•CCD (charge-coupled device), CMOS (complementary metal-oxide 
semiconductor)



CAMERAS, PART 2 | SHUTTER

Rolling Shutter

Soft Global Shutter

Hard Global Shutter



CAMERAS, PART 2 | INTENSITY IMAGE

•The resulting information from the image capture is an intensity 
image.

•Allows for use of the entire image, as opposed to just keypoints.

• Becomes dense, so some direct methods only use patches of 
interest

• Intensity image is defined as:

• Ω is image domain

• Recall previously, images were 𝑅3 → 𝑅2



PHOTOMETRIC ERROR | SVO NOTATION

•Notation (from SVO)

• 𝐼𝑘−1, 𝐼𝑘: intensity images

• 𝑇𝑘,𝑘−1: frame transform

• 𝑢: image coordinate

• 𝑝: 3D point

• 𝑑𝑢: depth

• 𝜋: 𝑅3 → 𝑅2: camera projection model

• 𝜋−1: inverse

• 𝑘: camera frame of reference, or 
timestep 𝑘

• 𝜉: twist coordinates, se(3)

Relationships



PHOTOMETRIC ERROR | PRINCIPLES

•Photometric error: intensity difference between pixels observing the 
same point in 2 scenes.



PHOTOMETRIC ERROR | PRINCIPLES

• Intensity residual can be computed by:

• Back-projecting a 2D point from the previous image.

• Reprojecting it into the current camera view.

• Looking to minimize negative log-likelihood between camera poses, 
using intensity residual.



PHOTOMETRIC ERROR | SOLVING

• Intensity residuals are normally distributed

•The equation is nonlinear in 𝑇𝑘,𝑘−1, can be solved via the Gauss-
Newton algorithm

• Incremental update: 𝑇 𝜉

• ෠𝑇𝑘,𝑘−1 is an estimate of the relative transformation

• 𝜉 ∈ 𝒔𝒆(3)



CAMERA RESIDUAL TERMS

•Reprojection error:

• Binary factor between 
feature and camera pose

•Photometric error:

• Unary factor (at least in SVO)

• No feature locations to 
estimate position of.



APPLICATION | SVO

•Applications

• Reprojection Error: Indirect VO/ SLAM

• Photometric Error: Direct VO/SLAM

•SVO (Semi-direct Visual Odometry) takes advantage of both.

• Initial pose estimate using direct

• Further refinement using indirect methods on keyframes



APPLICATION | SVO

• Indirect methods extract features, match them, and then recover camera 
pose (+structure) using epipolar geometry and reprojection error

• Pros: Robust matches even with high inter-image motion

• Cons: Extraction, matching, correspondence…can be quite costly

•Direct methods estimate camera pose (+structure) directly from intensity 
values and image gradients.

• Pros: Can use all information in image. More robust to motion blur, 
defocus. Can outperform indirect methods. 

• Cons: Can also be costly, due to density.



APPLICATION | SVO

•SVO steps:

1. Initial pose estimate through minimizing 
photometric error.

2. Relaxation through feature alignment.

3. Further refinement through reprojection
error.

• In parallel:

1. Determine keyframes, extract features

2. Estimate depth through projection model



APPLICATION | SVO

•Results:



•SVO 2.0:

APPLICATION | SVO 2.0
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