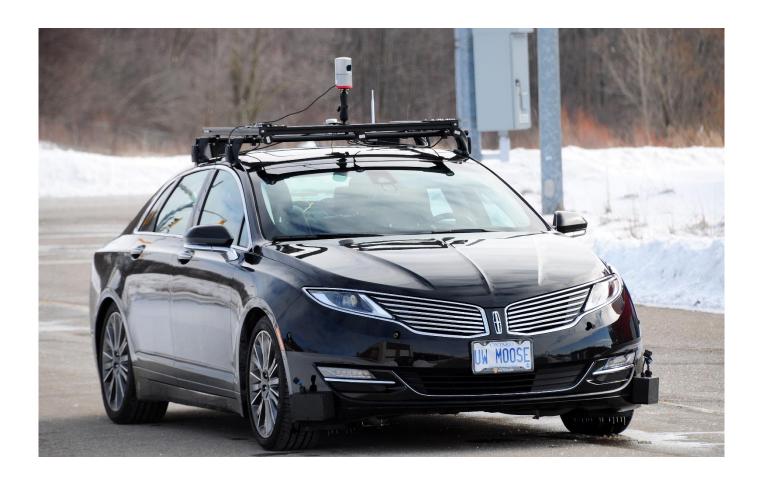


MODELLING CAMERA RESIDUAL TERMS USING REPROJECTION ERROR AND PHOTOMETRIC ERROR

June 26 2017 Pranav Ganti

OUTLINE

- Overview
- Geometry
- Cameras Part 1
- Multi-view Geometry
- Reprojection Error
- Cameras Part 2
- Photometric Error
- Application (SVO)



- Residual
 - Difference between the observed value and *estimated* value
- Cost/ Loss function is the function to be minimized
 - Generally a *function* of the residual
- Camera residuals
 - Formulation depends on indirect vs direct methods
 - A value to be minimized, which can estimate the camera pose.

- Euclidean Space (**R**³)
- Euclidean geometry describes:
 - Lines
 - Circles
 - Angles

•Issue: 💿

• How do we represent points at infinity?

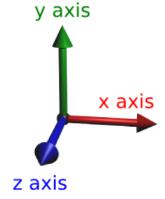
- Euclidean Space + *ideal points*
- Ideal points: **points at infinity.**
 - Now, 2 lines always meet in a point!
- Projective space is derived from Euclidean space by adding line @ infinity
- Points at infinity can be described using homogeneous coordinates

- Homogeneous coordinates in \mathbb{R}^n written as an n + 1 vector
 - $R^2: (x, y, 1)^T, R^3: (x, y, z, 1)^T$
 - Ideal points: $(x, y, ..., 0)^T$
- What about scaled points?

•
$$(kx, ky, k)^T$$
 is an equivalence class of $\left(\frac{x}{k}, \frac{y}{k}, 1\right)^T$ - (we'll revisit why later!)

Euclidean space can be extended to projective space using homogeneous vectors

- Euclidean Transform: Rotation + Translation
- Affine transform: Rotation + Translation + Stretching (linear scaling)
- For both Euclidean and Affine transforms, points at infinity remain at infinity
- What about a projective transform?

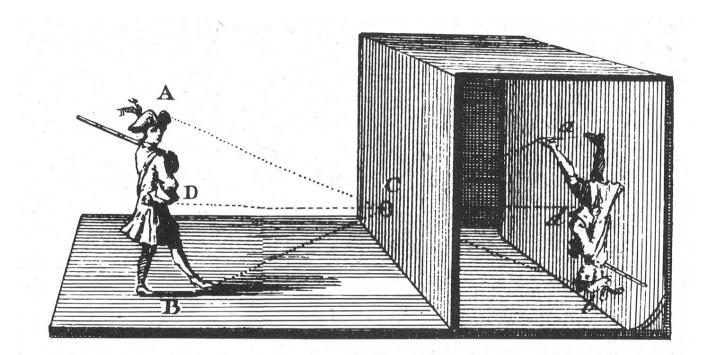


- What properties of an object are preserved?
 - Shape?
 - Angles?
 - Lengths?
 - Distances?
 - Straightness?

• Projective transformation is any mapping that preserves straight lines.

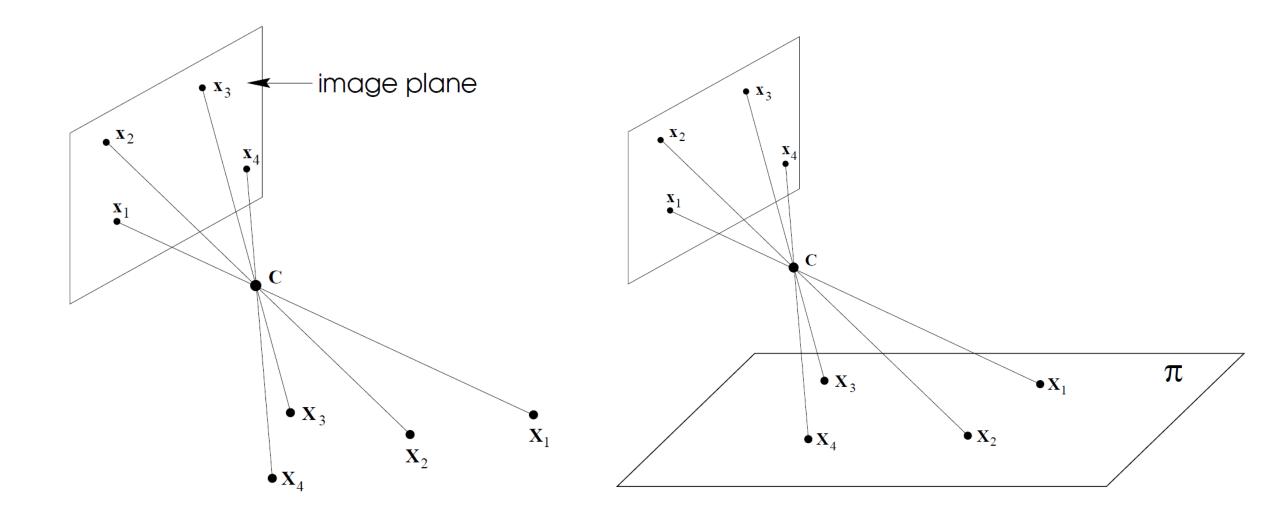
- Projective transformation is a mapping of the homogeneous coordinates
- Ideal points are **not** preserved
 - Points at infinity are mapped to arbitrary points
- For computer vision, the projective space is convenient
 - Treat 3D space as P^3 instead of R^3
 - Images as P^2
 - Useful for practical applications even though we know points at ∞ are our own construct

- Also known as "camera obscura"
- First type of camera
- Light passes through an opening
 - Image is reflected on the other side

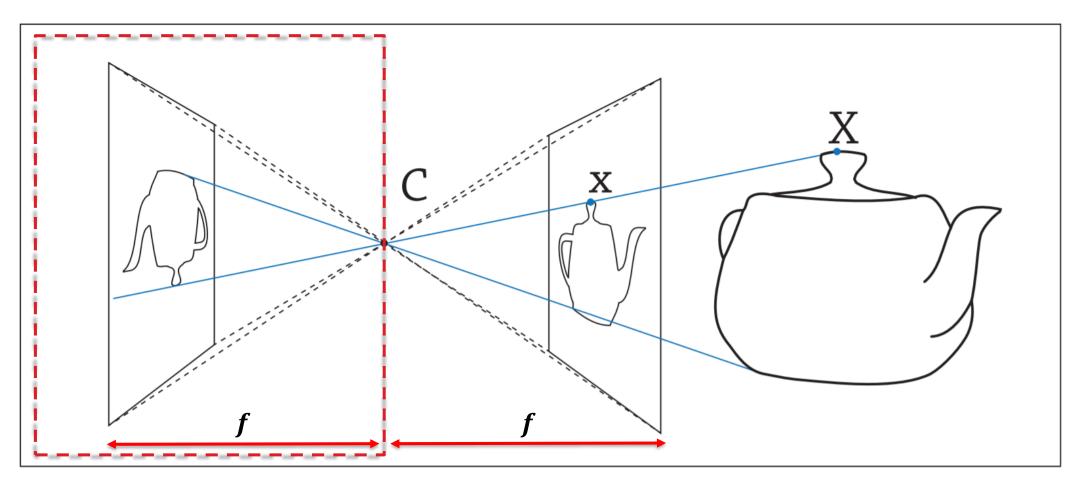


- Cameras are a map between the 3D world and 2D image
 - Projection: lose 1 dimension
- Can be mapped via **central projection**
 - Ray from 3D point passes through camera center of projection (COP)
 - Intersects image plane
- If 3D structure is planar, then there is no drop in dimension

CAMERAS, PART 1 | CENTRAL PROJECTION



• For convenience: can place image plane in front of COP



- In essence, central projection is just mapping $P^3 \rightarrow P^2$
 - The camera matrix P is a 3x4 matrix of rank 3

$$(x, y, w)^T = P(X, Y, Z, T)^T$$

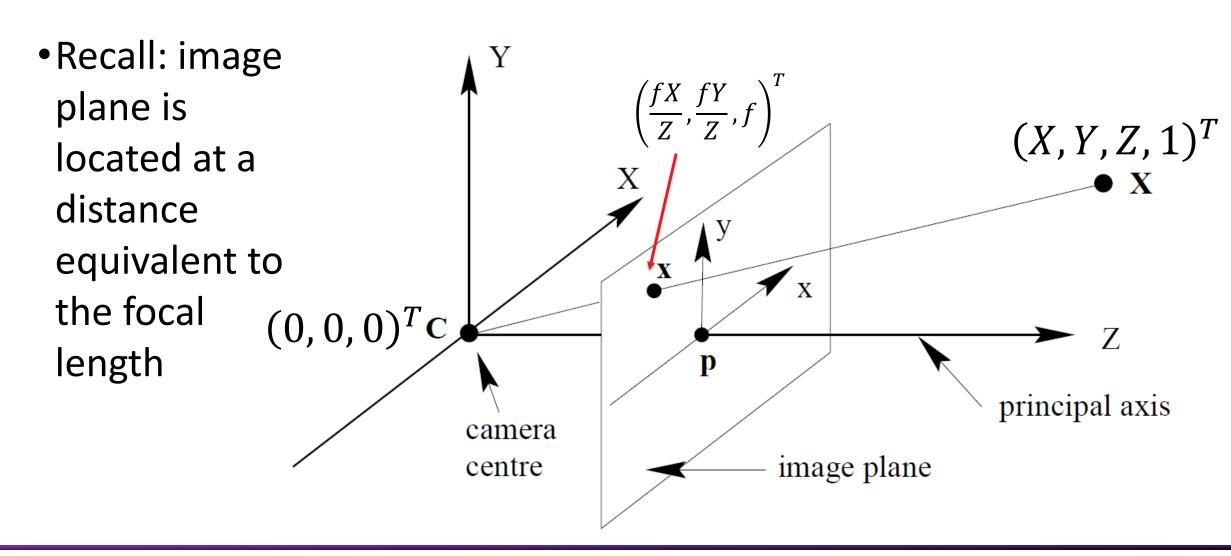
- $(x, y, w)^T$ are homogeneous coordinates of image space (P^2)
- $(X, Y, Z, T)^T$ are homogeneous coordinates of 3D world (P^3)

- Ray passing through COP is a projected point in the image.
 - Therefore, **all** points on ray can be considered equal.
 - Rays are image points, and we can represent rays as homogeneous coordinates

- Need calibration to express relative Euclidean geometry between image and world.
 - With a calibrated camera, can back-project 2 points in an image
 - Can then determine angle between two rays

- Let's derive the camera matrix.
- Assumptions:
 - Center of projection is origin (R^3)
- Using pinhole camera model:
 - By similar triangles:

$$(X, Y, Z)^T \rightarrow \left(\frac{fX}{Z}, \frac{fY}{Z}, f\right)$$



• Mapping from P^3 to P^2 using similar triangles



- With the Euclidean origin @ the COP:
 - Central projection just becomes a linear map b/w homogenous coordinates

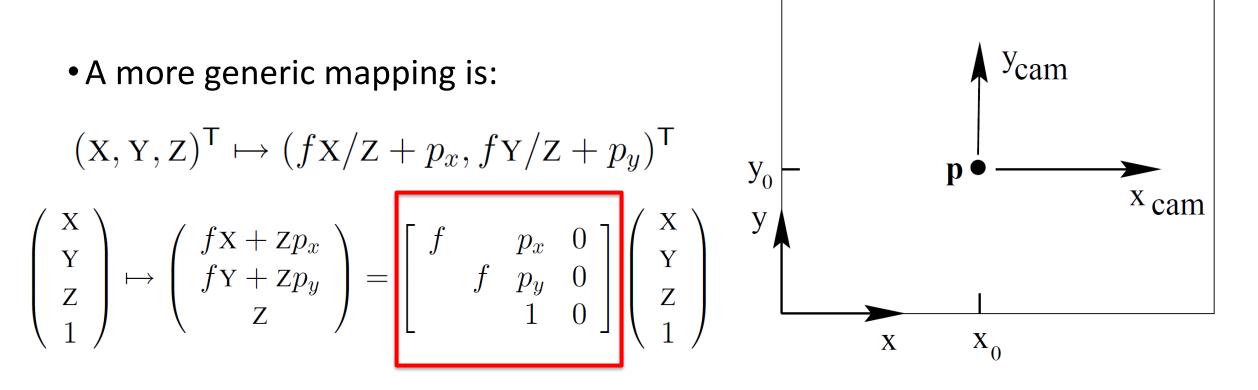
$$\begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} \mapsto \begin{pmatrix} fX \\ fY \\ Z \end{pmatrix} = \begin{bmatrix} f & 0 \\ f & 0 \\ 0 & 1 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

• Can be written as:

 $\mathbf{x} = \mathsf{P}\mathbf{X}$

$$\mathbf{P} = \mathrm{diag}(f, f, 1) \left[\mathbf{I} \mid \mathbf{0} \right]$$

• The previous equation assumes image coordinates at the principal point.



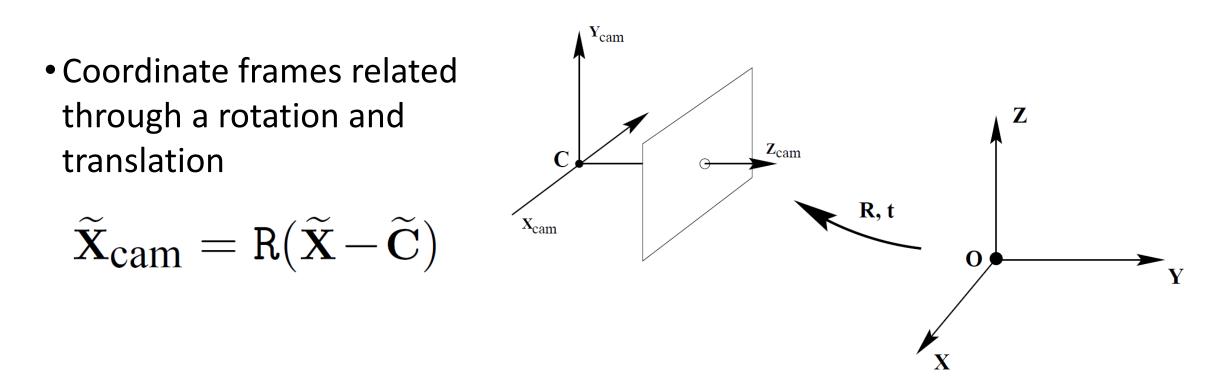
 $\mathbf{K} = \begin{bmatrix} f & \mathbf{S} & p_x \\ & f & p_y \\ & & 1 \end{bmatrix}$

- *K* is the camera calibration matrix
 - Can also add a skew parameter
- •Can then express

 $\mathbf{x} = \mathtt{K}[\mathtt{I} \mid \mathbf{0}] \mathbf{X}_{cam}$

where x_{cam} is $(X, Y, Z, 1)^T$, expressed in a coordinate frame at the COP.

- The world coordinate frame is not always expressed at COP.
 - Example: a moving camera!



• The equation can now be expressed as:

$$\mathbf{X}_{cam} = \begin{bmatrix} \mathbf{R} & -\mathbf{R}\widetilde{\mathbf{C}} \\ 0 & 1 \end{bmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{Z} \\ 1 \end{pmatrix} = \begin{bmatrix} \mathbf{R} & -\mathbf{R}\widetilde{\mathbf{C}} \\ 0 & 1 \end{bmatrix} \mathbf{X}$$
$$\mathbf{X} = \mathbf{K}\mathbf{R}[\mathbf{I} \mid -\widetilde{\mathbf{C}}]\mathbf{X}$$
$$\mathbf{P} = \mathbf{K}[\mathbf{R} \mid \mathbf{t}] \qquad \mathbf{t} = -\mathbf{R}\widetilde{\mathbf{C}}$$

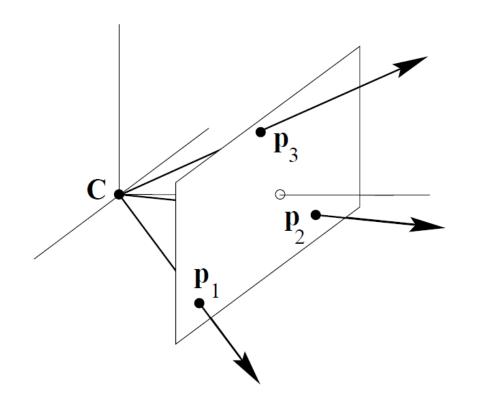
- Forward projection: maps a point in 3D space to an image point
 - x = PX

- Back projection: from a point x in an image, we can determine the set of points that map to this point.
 - Ray in space passing through the space
- •How can we obtain the back projection?

CAMERAS, PART 1 | BACK PROJECTION

- Null space of C is the camera center
- We know 2 points on each ray:
 - COP (PC = 0)
 - Image point $(P^+x), P^+ = P^T (PP^T)^{-1}$
- Why is P^+x the second point?
 - It projects to x!
 - $P(P^+x) = Ix = x$

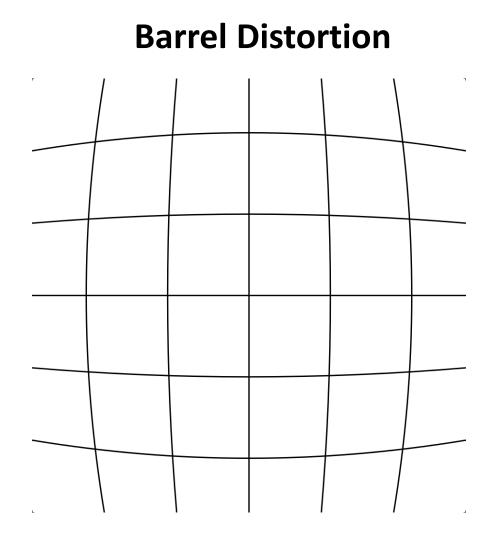
•The ray is then the line connecting these two points.



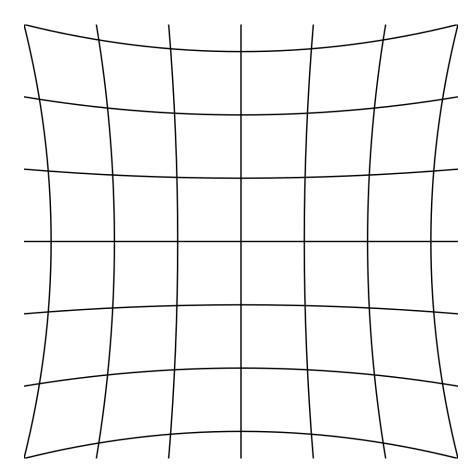
- Pinhole camera is ideal
 - Not a true representation of a camera
- Need to correct for distortions
 - Want images *as if* we were using a pinhole camera
- Distortion can be radial or tangential

P = 1/f(m) object Note: object distance normally negative. P = 1/f(m) Focal length f image image distance image distance image distance image image distance

CAMERAS, PART 1 | LENS DISTORTION



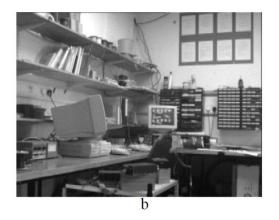
Pincushion Distortion

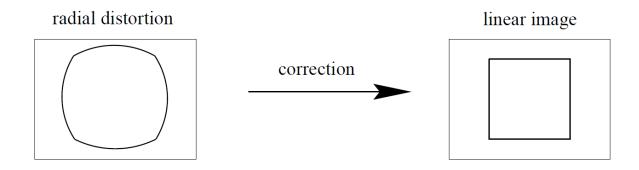


• Lens distortion occurs during initial projection onto image plane

$$\left(\begin{array}{c} x_d \\ y_d \end{array}\right) = L(\tilde{r}) \left(\begin{array}{c} \tilde{x} \\ \tilde{y} \end{array}\right)$$

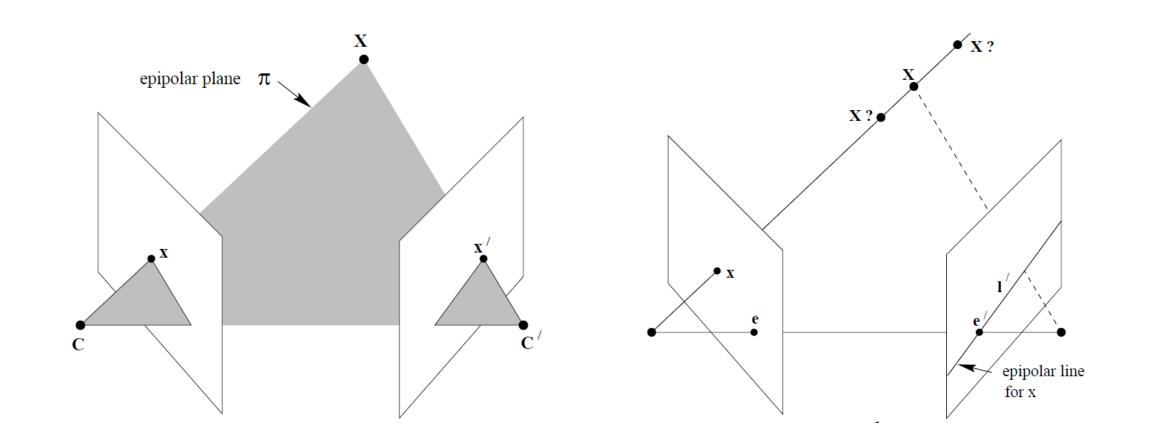
- \tilde{x} , \tilde{y} are ideal, x_d , y_d are actual
- \tilde{r} is Euclidean distance
- $L(\tilde{r})$ is the distortion factor.
 - Can be solved for through calibration



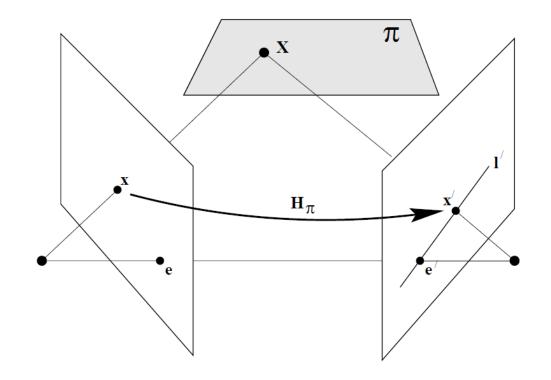


- Motivation: to search for corresponding points in stereo matching
- Baseline: Line joining camera centers
- Epipole: point of intersection b/w baseline and image plane
- Epipolar line: intersection of an epipolar plane with the image plane
- Epipolar plane: plane containing the baseline

MULTI-VIEW GEOMETRY | EPIPOLAR CONSTRAINTS



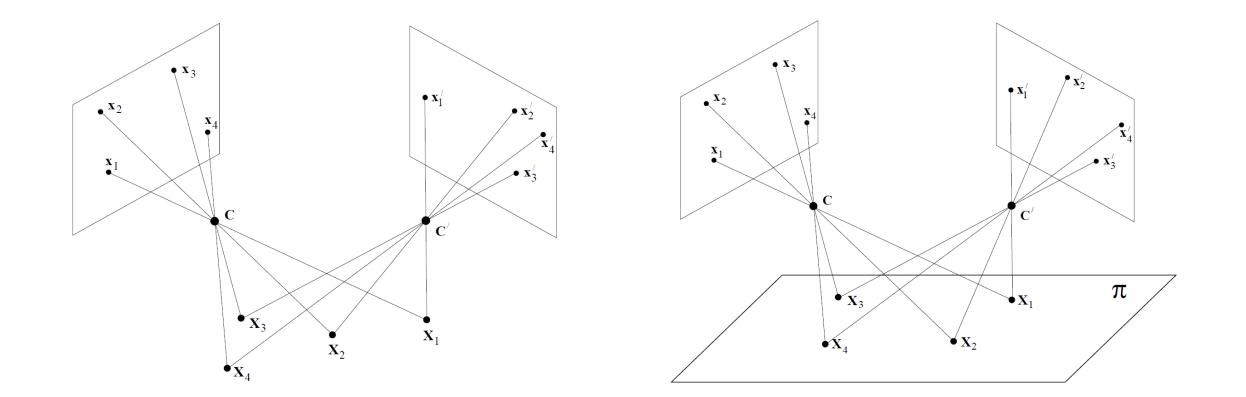
- Algebraic representation of epipolar geometry
- F represents the mapping from $P^2 \rightarrow P$, through the epipolar lines.
- Two steps:
 - Map point x to x'
 - Obtain l' from joining x' to e'



• Properties:

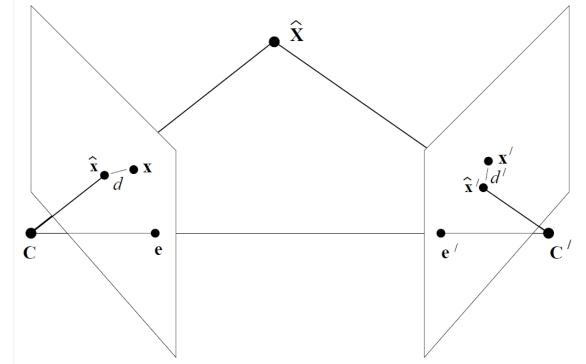
- Correspondence: $x'^T F x = 0$
- Transpose: If F is the matrix for camera P, F^T is the corresponding fundamental matrix for camera P'
- Epipolar lines: l' = Fx, $l = F^T x'$
- $Fe = 0, e'^T F = 0$
- Methods to solve: 7 point algorithm, 8 point algorithm, RANSAC...

MULTI-VIEW GEOMETRY | STEREO CAMERAS



- Summed squared distance between *projections* of *X*, and measured image points.
 - Euclidean distance
 - In 2 images

$$\sum_i d(\mathbf{x_i}, \hat{\mathbf{x_i}})^2 + d(\mathbf{x_i}', \hat{\mathbf{x_i}}')^2$$

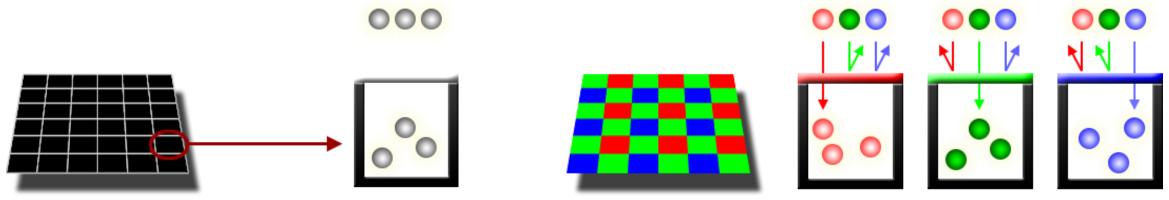


- Fundamental matrix
 - MLE of F (assuming Gaussian noise) minimizes reprojection error
 - $\hat{x}, \hat{x'}$ are ideal points, and obtained from $\hat{x} = PX$.
 - Both P and X can be modified to minimize this error.

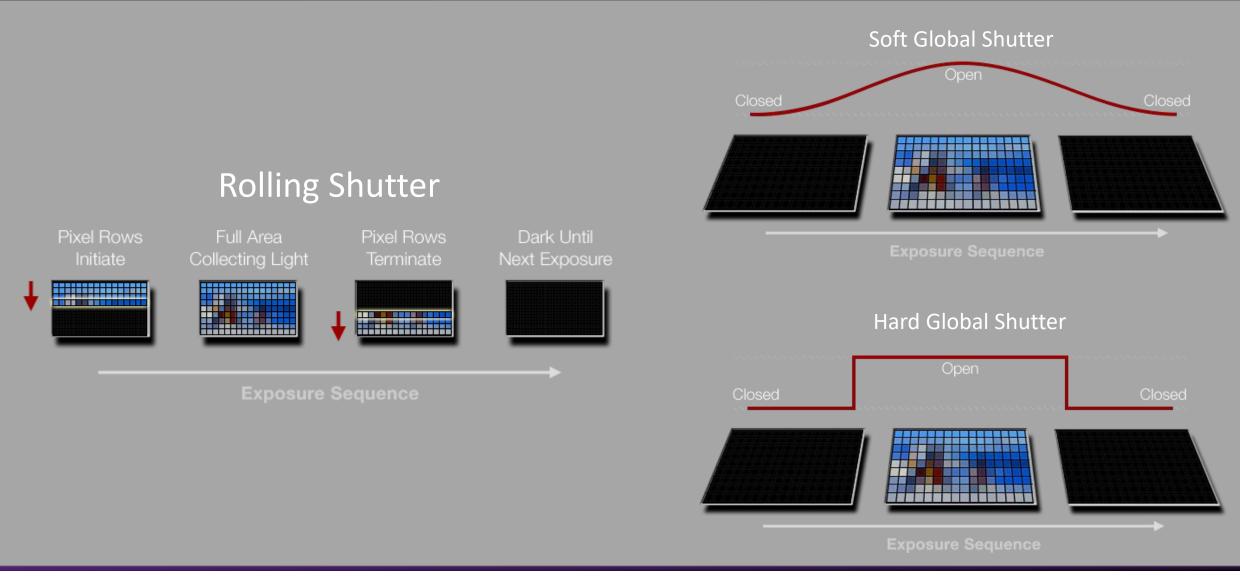
 -Recall: P = K[R | t], and R, t represent the camera pose in the world frame!

- •Bundle adjustment
 - Similar, except the intrinsic parameters can also be modified.

- Camera sensors consist of photosites
 - Quantifies amount of light collected
 - The digitized information is a pixel
- CCD (charge-coupled device), CMOS (complementary metal-oxide semiconductor)



CAMERAS, PART 2 | SHUTTER



- The resulting information from the image capture is an **intensity image.**
- Allows for use of the **entire** image, as opposed to just keypoints.
 - Becomes dense, so some direct methods only use patches of interest
- Intensity image is defined as:
 - Ω is image domain

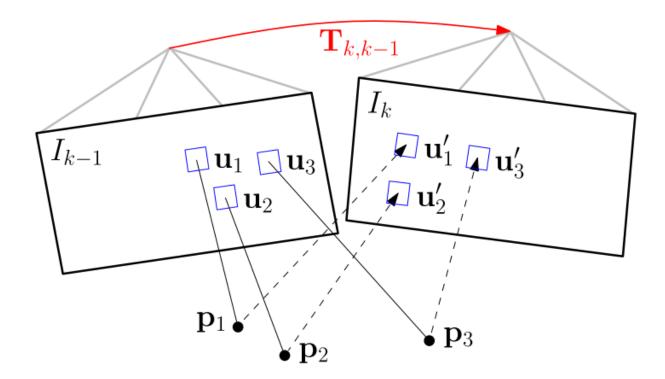
$$I_k: \Omega \subset \mathbb{R}^2 \mapsto \mathbb{R}$$

• Recall previously, images were $R^3 \rightarrow R^2$

- Notation (from SVO)
 - I_{k-1} , I_k : intensity images
 - $T_{k,k-1}$: frame transform
 - *u*: image coordinate
 - *p*: 3D point
 - d_{ν} : depth
 - $\pi: \mathbb{R}^3 \to \mathbb{R}^2$: camera projection model
 - π^{-1} : inverse
 - k: camera frame of reference, or timestep k
 - ξ : twist coordinates, se(3)

$$\frac{\text{Relationships}}{\mathbf{u} = \pi(_k \mathbf{p})}$$
$$_k \mathbf{p} = \pi^{-1}(\mathbf{u}, d_{\mathbf{u}})$$
$$\mathbf{T}_{k,w} \in SE(3)$$
$$\mathbf{T}_{k,k-1} = \mathbf{T}_{k,w} \cdot \mathbf{T}_{k-1,w}^{-1}$$
$$\mathbf{T}(\xi) = \exp(\hat{\xi})$$

• Photometric error: intensity difference between pixels observing the same point in 2 scenes.



- Intensity residual can be computed by:
 - Back-projecting a 2D point from the previous image.
 - Reprojecting it into the current camera view.

$$\delta I(\mathbf{T},\mathbf{u}) = I_k \Big(\pi \big(\mathbf{T} \cdot \pi^{-1}(\mathbf{u}, d_{\mathbf{u}}) \big) \Big) - I_{k-1}(\mathbf{u}) \quad \forall \mathbf{u} \in \bar{\mathcal{R}}_k$$

 Looking to minimize negative log-likelihood between camera poses, using intensity residual.

$$\mathbf{T}_{k,k-1} = \arg\min_{\mathbf{T}_{k,k-1}} \frac{1}{2} \sum_{i \in \bar{\mathcal{R}}} \| \delta \mathbf{I}(\mathbf{T}_{k,k-1},\mathbf{u}_i) \|^2$$

- Intensity residuals are normally distributed
- The equation is nonlinear in $T_{k,k-1}$, can be solved via the Gauss-Newton algorithm
 - Incremental update: $T(\xi)$
 - $\hat{T}_{k,k-1}$ is an estimate of the relative transformation
 - ξ ∈ se(3)

$$\delta \mathbf{I}(\boldsymbol{\xi},\mathbf{u}_i) = \mathbf{I}_k \Big(\pi \big(\hat{\mathbf{T}}_{k,k-1} \cdot \mathbf{p}_i \big) \Big) - \mathbf{I}_{k-1} \Big(\pi \big(\mathbf{T}(\boldsymbol{\xi}) \cdot \mathbf{p}_i \big) \Big)$$

$$\mathbf{p}_i = \boldsymbol{\pi}^{-1}(\mathbf{u}_i, d_{\mathbf{u}_i})$$

- Reprojection error:
 - Binary factor between feature and camera pose

$$\sum_i d(\mathbf{x_i}, \hat{\mathbf{x_i}})^2 + d(\mathbf{x_i}', \hat{\mathbf{x_i}}')^2$$

- Photometric error:
 - Unary factor (at least in SVO)
 - No feature locations to estimate position of.

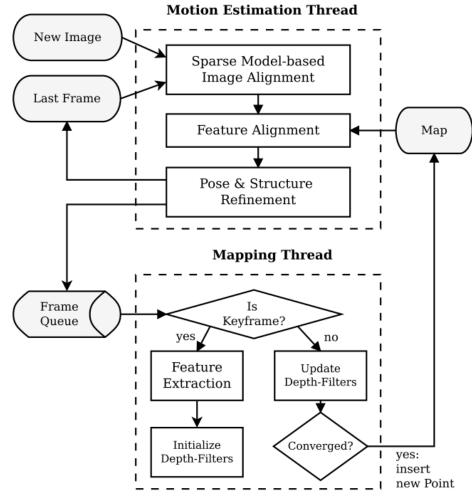
$$\mathbf{T}_{k,k-1} = \arg\min_{\mathbf{T}_{k,k-1}} \frac{1}{2} \sum_{i \in \bar{\mathcal{R}}} \| \delta \mathbf{I}(\mathbf{T}_{k,k-1},\mathbf{u}_i) \|^2$$

- Applications
 - Reprojection Error: Indirect VO/ SLAM
 - Photometric Error: Direct VO/SLAM
- SVO (Semi-direct Visual Odometry) takes advantage of both.
 - Initial pose estimate using direct
 - Further refinement using indirect methods on keyframes

- Indirect methods extract features, match them, and then recover camera pose (+structure) using epipolar geometry and reprojection error
 - Pros: Robust matches even with high inter-image motion
 - Cons: Extraction, matching, correspondence...can be quite costly
- Direct methods estimate camera pose (+structure) directly from intensity values and image gradients.
 - Pros: Can use all information in image. More robust to motion blur, defocus. Can outperform indirect methods.
 - Cons: Can also be costly, due to density.

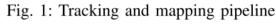
APPLICATION | SVO

• SVO steps:



1.

- Initial pose estimate through minimizing photometric error.
- Relaxation through feature alignment. 2.
- 3. Further refinement through reprojection error.
- In parallel:
 - Determine keyframes, extract features 1.
 - 2. Estimate depth through projection model



• Results:



• SVO 2.0:

- R. Hartley and A. Zisserman, Multiple view geometry in computer vision. Cambridge university press, 2003.
- C. Forster, M. Pizzoli, and D. Scaramuzza, "Svo: Fast semi-direct monocular visual odometry," in Robotics and Automation (ICRA), 2014 IEEE International Conference on, pp. 15–22, IEEE, 2014.
- C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza, "Svo: Semidirect visual odometry for monocular and multicamera systems," IEEE Transactions on Robotics, 2016.

- <u>https://i.stack.imgur.com/SitTF.png</u> Retrieved June 24 2017
- <u>http://www.red.com/learn/red-101/global-rolling-shutter</u> Retrieved June 25 2017
- <u>https://en.wikipedia.org/wiki/Errors_and_residuals</u>
- <u>https://en.wikipedia.org/wiki/Euclidean_space</u>
- <u>https://en.wikipedia.org/wiki/Distortion_(optics)</u>
- <u>http://www.cc.gatech.edu/~afb/classes/CS4495-</u> <u>Fall2013/slides/CS4495-05-CameraModel.pdf</u>
- <u>https://en.wikipedia.org/wiki/Camera_obscura</u>