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Introduction | Motivation

Calibration SLAM Localization

Build a leastsquares estimation framework for many applications.

Arun Das| Waterloo Autonomous Vehicles Lab %Y WATERLOC



Introduction | Outline

A Syllabus
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Estimatior] Backend Vs Front End
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Introduction | Backend Vs Front End
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Estimation| Lie Group Theory

A Why do we need to study this?

A We deal with pose (orientation and position) as estimation states
A How do we optimize a Rotation or Transformation matrix?
A Study different parameterizations and representations
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Estimation] Rotationsg Exponential Map

Lie Group SO(3)
State Vector

R € S50(3)

Lie Algebra so(3)

Parameter Estimate

Exp. Map
G ———

—
Log Map

Wx € 50(3)
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Estimation] Maximum Likelihood Estimation

A Most of the problems we will be dealing with can be formulated as a
nonlinear least squares optimization

A Starts with maximum likelihood estimation

Nonlinear Least
Squares

UNIVERSITY OF

Arun Dag Waterloo Autonomous Vehicles Lab WATERLOO



Estimatior] Maximum Likelihood Estimation

independent measurements

l
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parameters

Likelihood function:
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Log Likelihood function:
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Estimatior] Maximum Likelihood Estimation

Find the parameters that maximize the average log likelihood function:

éz%lnﬁ

lee = argmax £(0 |z, ... ,a:q
0co
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Estimatior] Maximum Likelihood Estimation

From estimation perspective, we can map the following concepts:
A Independent samples Sensor measurements

A Likelihood functiong Measurement and motion models

A Parameters; vehicle / camera poses, calibration quantities, etc.

lee = argmax £(0 |z, ... ,a:q
0coO
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Estimation| Factor Graphs

Factor Graphs: Graphical Representation for MLE/MAP
A x1,x2,x3 are estimation parameters (nodes)
A 01,02 areodometry measurements

Likelihood of x2 and x3,
givenodometry 02
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Estimation| Factor Graphs

Factor Graphs: Graphical Representation for MLE/MAP
A Factors between two nodes are callBthary Factors

AllLy Itaz2 KIgS -apfacte > SNV NB X
A Sometimes calledesiduals(cereg constraints(g20)
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Estimatior] Solving Factor Graphs

Factor Graphs are solved usimgnlinear optimization
A Most of the time, cost is formulated as a least squares problem
A Minimize the sum of squaressidualsover all the factors

F(x) = » ep(xk.zr) Quew(xp. i)
keC hg
x* = argminF(x).
xX
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Estimatior] Solving Factor Graphs

Because they are nonlinear, we need to linearize about a
Linearization pointusing Taylor series expansion

ey (ik + AX;{_) e;{_(f& + AX)

e. + JkAX

¢

Where J is thdacobian of the residual term
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Estimatior] Solving Factor Graphs

Substitute back into the original cost function:

Fi. (%X + AX)
= ep(Xx+ AX) Qren(x + AX)
~ (en + JeAX)" Q. (er + Jp AX)
— e Qe +2e; 0T Ax + Ax T, QT Ax

= ¢+ 2br AX + AXTH,L;AX

To find the minimum, we just need to take the derivatiwe
the parameter update and set it equal to zero.
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Estimatior] Solving Factor Graphs

To find the minimum, we just need to take the derivatwe
the parameter update and set it equal to zero.

F(x+ Ax) = » Fi(x+ Ax)

keC

Z cr + 2br Ax + AxI H,. Ax
keC

— c+2b'Ax+ Ax'HAx.

2

We finally get the linearized system we need to solve:
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Estimatior] Solving Factor Graphs

We solve the linear system using any method we wish.
Note the sparsity pattern of H

Once solved, the initial linearization point it updated:
- *x
x* = x4+ Ax

The process of linearization and solving is repeated until convergence.
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Estimation| Issue

A Issue: Our estimation tools are developed for vector spaces
A Many times, our state space lives on a manifold
A How can we use the vector space tools to update manifold quantities?

x* = x4+ AxX"
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Estimationq Box Operators

S X R"— 8§,
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Estimatior] SLAM on Manifolds

A Approach: Perform same operations as before, but using the box operator
where appropriate

8:(A%,) 2 en(x, BAX,)

=  ep(xEHAX) ~ &, + J A%
T

Not exactly same Jacobian
from vector case!

Need to take boyplus implementation into account when calculating Jacobian!

v OAX Ax=0 I

UNIVERSITY OF

Arun Dag Waterloo Autonomous Vehicles Lab %) WATERLOO



Estimatior] SLAM on Manifolds

A Solve the linear system

i~ o~

HAX® = —b.

A Update the system state using bplus

x* = xHAX"
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Estimatior] SLAM on Manifolds

A General Summary:
A Get an initial guess for the estimation parameters

A Until convergence:
A Linearize the nonlinear residual terms
A Calculate the Jacobian, Hessian, and gradient

A Solve the linear system
A Update the linearization point using the solved value

A Batch approach allows foe-linearizationover all trajectory
A Better performance with nonlinear models
A Less error absorbed into prior
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Estimation] Batch vs Sliding Window

— = Odometry
— = GPS

Batch: Optimize over all poses

ﬁ

Optimization Window
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Estimatior] Batch vs Sliding Window

Sliding Window: Optimize over only poses in the window —_ = Odometry
—{ — GPS
—J— Prior

UNIVERSITY OF

Arun Dag Waterloo Autonomous Vehicles Lab %) WATERLOO



Estimatior] Batch vs Sliding Window

Sliding Window: Optimize over only poses in the window —_ = Odometry
—{ — GPS
—J— Prior
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Estimatior] Batch vs Sliding Window

— = Odometry
— = GPS

—3— Prior

Sliding Window: Optimize over only poses in the window
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Estimation] Batch vs Sliding Window

— = Odometry
— = GPS

—3— Prior

Sliding Window: Optimize over only poses in the window
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Batch Estimatioh Batch vs Sliding Window

— = Odometry
— = GPS

—3— Prior

Sliding Window: Optimize over only poses in the window
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Estimatior] Batch vs Sliding Window

— = Odometry
— = GPS

—3— Prior

Sliding Window: Optimize over only poses in the window

|

Marginalization
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Estimatior] Batch vs Sliding Window

— = Odometry
— = GPS

—3— Prior

Sliding Window: Optimize over only poses in the window
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Estimatior] Batch vs Sliding Window

— = Odometry
— = GPS

—3— Prior

Sliding Window: Optimize over only poses in the window
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Estimatior] Batch vs Sliding Window

— = Odometry
— = GPS

—3— Prior

Sliding Window: Optimize over only poses in the window
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Estimatior] Batch vs Sliding Window
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Estimatior] Batch vs Sliding Window
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Estimatior] Batch vs Sliding Window

— = Odometry
— = GPS

—3— Prior

Sliding Window: Optimize over only poses in the window
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Sensor MeasurementsMotivation

ScanMatching
IMU integration

A We need to generate measurements from Feature Tracking
our raw sensor data . Image Alignment
A Define measurement equations EtcX

which predict the measurements
given the state

Front End

1 4 (¥ 4 \
W 0 W Sensors
Linear measurement model

Measurement
1 4 L X 4 \ .
(L) S 2 (l) Extraction

nonlinear measurement model
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Sensor MeasurementsGenerating Residual Terms

Residuals: The terms we wish to minimize (cost function contributions).

e
os 9
H
Camera reprojection IMU Preintegration. Laser Scan Registration.

/ photometric error.

Kinematics models.
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Sensor MeasurementsLIDAR

Find the relative transformation between scans, in order to place
them in a single cordinate system

UNIVERSITY OF

Arun Dag Waterloo Autonomous Vehicles Lab WATERLOO



Batch Estimatioh Scan Registration

ICP iterations = 1

White: Criginal point cloud
Red: ICP aligned point cloud

Find the relative transformation between scans, in order to place
them in a single cordinate system
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Sensor Measurementp Scan Registration

Find the relative pose from one tinstep to the next using
Scan Registration

Factor graph

UNIVERSITY OF

Arun Dag Waterloo Autonomous Vehicles Lab WATERLOO



