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Build a least-squares estimation framework for many applications. 

Calibration SLAM Localization
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ÅSyllabus
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ÅWhy do we need to study this?
ÅWe deal with pose (orientation and position) as estimation states

ÅHow do we optimize a Rotation or Transformation matrix?

ÅStudy different parameterizations and representations
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Lie Group SO(3) Lie Algebra so(3)

State Vector Parameter Estimate

Exp. Map

Log Map
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Nonlinear Least 
Squares

Back End

ÅMost of the problems we will be dealing with can be formulated as a 
nonlinear least squares optimization

ÅStarts with maximum likelihood estimation
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parameters

independent measurements

Likelihood function:

Log Likelihood function:
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Find the parameters that maximize the average log likelihood function:
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From estimation perspective, we can map the following concepts:
Å Independent samples ςSensor measurements
Å Likelihood functions ςMeasurement and motion models
Å Parameters ςvehicle / camera poses, calibration quantities, etc.
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Factor Graphs: Graphical Representation for MLE/MAP
Å x1,x2,x3 are estimation parameters (nodes)
Å o1,o2 are odometrymeasurements

Prior on x1

Likelihood of x1 and x2, 
given odometryo1

Likelihood of x2 and x3,
given odometryo2

* Find x1,x2,x3 to maximize total likelihood: 
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Factor Graphs: Graphical Representation for MLE/MAP
Å Factors between two nodes are called Binary Factors
Å/ŀƴ ŀƭǎƻ ƘŀǾŜ ǳƴŀǊȅΣ ǘŜǊƴŀǊȅΣΧΣ ƴ-aryfactors
Å Sometimes called residuals(ceres) constraints(g2o)

Likelihood of x3,
given measurement z3
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Factor Graphs are solved using nonlinear optimization
Å Most of the time, cost is formulated as a least squares problem
Å Minimize the sum of squared residuals over all the factors
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Because they are nonlinear, we need to linearize about a
Linearization pointusing Taylor series expansion

Where J is the Jacobian of the residual term
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Substitute back into the original cost function:

Where J is the Jacobian of the residual term

To find the minimum, we just need to take the derivative wrt
the parameter update and set it equal to zero.
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To find the minimum, we just need to take the derivative wrt
the parameter update and set it equal to zero.

We finally get the linearized system we need to solve:
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We solve the linear system using any method we wish.  
Note the sparsity pattern of H

Once solved, the initial linearization point it updated:

The process of linearization and solving is repeated until convergence.
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Å Issue: Our estimation tools are developed for vector spaces
Å Many times, our state space lives on a manifold
Å How can we use the vector space tools to update manifold quantities?



Estimation| Box Operators

Arun Das| Waterloo Autonomous Vehicles Lab



Estimation| SLAM on Manifolds

Arun Das| Waterloo Autonomous Vehicles Lab

Å Approach: Perform same operations as before, but using the box operator
where appropriate

Not exactly same Jacobian
from vector case!

Need to take box-plus implementation into account when calculating Jacobian!
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Å Solve the linear system

Å Update the system state using box-plus
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Å General Summary:
Å Get an initial guess for the estimation parameters
Å Until convergence:
Å Linearize the nonlinear residual terms
Å Calculate the Jacobian, Hessian, and gradient
Å Solve the linear system
Å Update the linearization point using the solved value

Å Batch approach allows for re-linearization over all trajectory
Å Better performance with nonlinear models
Å Less error absorbed into prior
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Odometry

GPS

Optimization Window

Batch: Optimize over all poses
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ÅWe need to generate measurements from 
our raw sensor data
Å Define measurement equations 

which predict the measurements
given the state

ώ ὅὼ
Linear measurement model

ώ Ὤὼ
nonlinear measurement model

Front End

Sensors

Measurement 
Extraction

Scan-Matching
IMU integration
Feature Tracking
Image Alignment
EtcΧ
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Residuals: The terms we wish to minimize (cost function contributions).

IMU Pre-integration. Laser Scan Registration.Camera re-projection 
/ photometric error.

Kinematics models.
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Find the relative transformation between scans, in order to place
them in a single co-ordinate system
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Find the relative transformation between scans, in order to place
them in a single co-ordinate system
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Find the relative pose from one time-step to the next using
Scan Registration

Factor graph


