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 Planning Concepts

 Reactive Motion Planning Algorithms
 Bug
 Potential Fields
 Trajectory Rollout

 Graph Based Motion Planning
 Finding paths on graphs

 Depth First, Breadth First, Wavefront
 Dijkstra, A*

 Generating Graphs from environments
 Visibility Graphs
 Decompositions 3
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 Probabilistic Graph Based Planning
 Complex Planning Examples
 Probabilistic Roadmaps
 PRM Algorithm
 Collision Detection
 Sampling Strategies
 RRT Algorithm

 Optimization Based Planning
 Linear Programming
 Nonlinear Programming

4

OUTLINE



 Motion Planning Terminology
 Work space

 The environment the vehicle finds itself in
 Comes from industrial robotics
 2-3D physical world 
 Can be defined in a number of ways

 Polygons, Surfaces, Occupancy grids
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 Motion Planning Terminology
 Configuration Space

 Complete planning space of robot
 For two linkage robot, workspace is 2D space of joint angles, 

minus black areas which are positions blocked by obstacles
 Configuration space is much different, defined by allowable 

states in white, unallowable in grey
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Work space Configuration space



 Motion Planning Terminology
 Configuration space for a two wheeled non-point robot

 Can be insufficient to simply expand the obstacle
 Can find x,y path but must also identify heading to travel in
 Constraints on velocity not represented here 7
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 Objectives
 Predefined target configuration

 Guaranteed to find a path
 Minimum distance
 Minimum time
 Minimum cost (drivability, risk)

 Coverage/Search
 Explore/monitor an area by visiting all locations

 At least once
 Exactly once
 Minimizing time between visits etc.
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 Constraints
 Occupancy

 Obstacles defined by geometric representation
 State of vehicle cannot violate obstacle regions
 Included in definition of work space, configuration space

 Dynamics
 Holonomic vs Nonholonomic

 When motion constraints involve vehicle velocities, the 
system is considered nonholonomic
 Much harder planning problem
 Two wheeled robot a classic example
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 Approaches
 Reactive – local approach

 Decide a direction to go in based on goal and obstacles
 Ignores vehicle dynamics
 Usually deterministic formulation

 Graph-based – global approach
 Graph extracted from workspace definition
 Graph generated by random sampling of nodes and random 

connections between nodes

 Optimal – global approach
 Find complete path to goal
 Incorporate constraints 

 May need to model a certain way
 Graph representation of environment
 Linear, nonlinear, mixed integer-linear
 Probabilistic representation of configuration space (soft 

constraints) 10
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 Reactive - Bug Algorithms
 Simplest form of path planning from implementation 

point of view
 Assume very little knowledge of environment or robot state

 Define a set of rules, prove reachability of goal

 Bug 0, 1, 2, Tangent Bug ….
 Demonstrate how hard it is to find way around 2D 

environment even if optimality is of no concern
 Require as little storage and sensing as possible
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 Bug 0: Known goal and robot locations, can follow 
obstacle boundary
 Always head directly to goal 
 If blocked, turn and follow obstacle until you can 

head directly to goal  again
 Doesn’t always work

12

BUG ALGORITHMS



 Bug 1: Known location or robot and goal, can 
follow obstacle boundary
 Head directly toward goal
 When blocked, circumvent obstacle, remember closest 

point
 Return to closest point and continue to goal
 Guaranteed arrival
 Can be slow
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 Bug 2: Known location and goal, can follow 
obstacle boundary
 Head toward goal, track start-goal line (m-line)
 When blocked, circumvent obstacle until m-line 

 Try both directions if necessary
 Continue to goal
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 Bugs Comparison
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Bug 2 beats Bug 1 Bug 1 beats Bug 2

No clear winner, we need something more sophisticated



 Potential Fields [Khatib, 1986]
 A simple type of navigation function

 A function that describes a direction of travel everywhere in 
the environment

 Defines a potential field at every point in map
 Robot descends potential field by moving in direction 

of negative gradient
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 Potential Field Target function
 Target attracts the vehicle

 Distance ( ρ ) between vehicle, q, and target, qg

 Usually quadratic, can be anything
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 Potential Fields
 Obstacles repel the vehicle

 Strength based on shortest distance to obstacle Oi

 Often a maximum distance of influence is included
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 Distance to obstacle function
 Minimum of the distances to every point on the 

boundary of the obstacle

 Gradient for distance to obstacle

 Must find closest point to evaluate either
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 Potential Fields
 Potential field is combination of the two fields
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 Potential Fields
 Motion should then proceed in the direction of steepest 

descent of the potential
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 Potential fields
 Pros

 Easy to implement
 Fast to compute online
 Intuitive
 Can tailor how close to go to obstacles

 Cons
 Not optimal
 No dynamic constraints considered
 Local minima
 Stability
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 Potential fields example
 Hardest part is defining the environment

 Non overlapping obstacles

 Define potential field only for plotting

 Gradient at current location is needed for motion
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 Potential Field Example
 Robot is assumed to move in direction of steepest 

descent with speed equal to magnitude of gradient

 Potential is created from three elements
 Attractive potential to goal
 Repulsive potential from closest point on obstacle, up to a 

range of 0.5 meters
 Repulsive potential from center of obstacle, up to a range of 

4 meters
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 The obstacle field
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 Potential fields example
 The potential field
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 Potential fields example
 Gradient field
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 Potential fields example
 The trajectory
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 The obstacle field
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 Potential fields example
 The potential field
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 Potential fields example
 Gradient field
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 Potential fields example
 The trajectory
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 Extended Potential Field
 Can add effect to manage vehicle heading

 A specific adaptation for driving robots
 Rotation potential

 Add a dependence on bearing to obstacle,
 As bearing increases, reduce potential
 No point worrying about what’s behind you
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 Select n inputs to apply 
 Eg. Const velocity, 10 different 

rotation rates
 Propagate trajectory forward to 

time t+T
 Check each trajectory for collisions
 Score each trajectory based on

 Progress to goal
 Distance from obstacles
 Similarity to previous choice
 Preference between input choices
 Etc…

 Pick best option and apply input
 Repeat as quickly as possible 34
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 Example
 Two-wheeled robot
 n = 11 trajectories
 T = 1 second
 v = 2 m/s
 ω = [-2, 2] rad/s
 Update rate  = 5 Hz

 Environments with 5 well spaced and 25 not-so-well 
spaced obstacles
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TRAJECTORY ROLLOUT – 5 OBSTACLES
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TRAJECTORY ROLLOUT – 25 OBSTACLES



 Identical to Trajectory Rollout except:
 Add dynamic constraint on input choices

 Max angular acceleration limits rotation rate options at 
each timestep

 Same for max translational acceleration if varying velocity

 Both are implemented in ROS navigation stack
 You’ve already used these
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 Summary - Reactive Planners
 Fast computationally

 Unless entire potential field must be computed (wavefront)
 Simple control laws

 Low computation requirements
 Great for microcontroller based robots

 Difficult to find globally optimal solutions
 Do not consider dynamic constraints
 Great for 2D, and for maneuverable robots 
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 Planning Concepts

 Reactive Motion Planning Algorithms
 Bug
 Potential Fields
 Trajectory Rollout

 Graph Based Motion Planning
 Finding paths on graphs

 Wavefront
 Dijkstra, A*, D*

 Generating Graphs from environments
 Visibility Graphs
 Decompositions 40

OUTLINE



 Graph-Based Planning
 Suppose map can be represented by a set of nodes 

and edges along which the vehicle can travel
 Can apply graph based shortest path solutions to find 

a path quickly 
 Optimal over graph

 Ignore dynamics
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 Definition of graph
 Graph G of nodes N with edges E: G(N,E)
 Cost of traveling from ni to nj: c(ni,nj)

 c(n1,n3) = 9
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 Neighbouring nodes
 Set of nodes adjacent to n: A(n)

 A(n5) = {n1, n3, n7}
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 Current cost
 Minimum cost of getting to node n: g(n)

 g(n4) = 14
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 Cost to go
 Cost to go heuristic from node n to the end: h(n)

 h(n4) = 22 for straight line distance metric
 Must always be less than or equal to true cost to go
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 Cost lower bound
 Estimated cost of shortest path through node n: 

f(n) = g(n) + h(n)
 f(n4) = 14 + 22 = 36
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 Finding the shortest path over a graph
 Breadth first search

 Start at starting node
 Find all nodes that can be reached in one step (neighbours)
 For each neighbour in previous step, find all of its 

neighbours, and repeat until all nodes (or end node) has 
been reached

 Only works for edges of equal length

 Depth first search
 Start at starting node
 Pick an available node based on some criteria (longest, 

closest to goal)
 Proceed as far as possible, then backtrack
 Continue until all nodes have been visited
 Only works for edges of equal length
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 Wavefront
 If the graph produced has unit cost edges, breadth 

first search can be used

 Resembles the propagation of a wave through graph
 Works well in 2D, 3D  for reasonable discretizations

 Resulting cost map is monotonic
 Leads to shortest path from any point in the occupancy grid 

to the final position 
 Or from current position to every point in the graph
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 Underlying graph structure for wavefront
 Add edges of unit cost by discretizing free space with 

an occupancy grid
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 Define two sets
 Open Set: O

 Set of nodes currently under consideration
 Initialize with start node n0

 Implemented as a queue, stack or priority queue
 Queue – breadth first search
 Stack – depth first search
 Priority queue – Dijkstra’s and A*

 Top node is first node in queue or stack form of open set
 Best node is first node in priority queue open set

 Closed Set: C
 All nodes for which processing is complete
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 Breadth first search algorithm
 While top node is not goal

 Move top node from open set to closed set
 Store node, back pointer to previous node and current 

cost 

 Add all neighbouring nodes of top node not currently in 
either set to the bottom of the open set 

 Store node, current cost and back pointer to top node

 For each node already in the open set, update current cost 
and back pointer if new path is shorter
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 Wavefront Algorithm
 Initialization

 Create open set of positions, which includes only the end 
point, assign a cost of 0

 Create a closed set of position, which includes all obstacles, 
assign a cost of infinity

 Main loop
 First position of open set becomes active

 Move to closed set
 Identify all neighbours that can be reached and are not 

already in open or closed sets
 Update each neighbour in open set with lower of the cost 

through current node or previous best cost
 Assign each new neighbour a cost of the active position 

+1
 Add all new neighbours to the end of the open set

 Until open set is empty 52
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 Wavefront
 Example
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 Wavefront
 Example
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 Wavefront
 50x50 grid (converted to a graph and solved using 

breadth first search)
 Link to video
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 Wavefront
 The vehicle then identifies a path by always selecting 

a position that reduces the cost to goal.
 Can be performed locally, wavefront is monotonic
 Many possible trajectories result
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 Fast Marching
 Can extend the basic wavefront algorithm to use 

more of a continuum based approach
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 Fast Marching
Can define viscosity of flow around obstacles
Results in a smooth path that does not hug obstacle corners
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 Breath-First, Wavefront and Fast Marching
 Pros:

 Monotic, always find path to goal if it exists
 Easy to implement

 Cons:
 Computes path from every point in planning space to end 

goal
 Not very efficient, but fast enough for 2D

 Must treat environment as discretized graph with unit step 
edges (occupancy grid)
 Approximation always leads to sub-optimality in 

resulting path
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 Finding the shortest path over a graph
 Dijkstra’s algorithm

 Start from starting node
 Expand all links out of the node with lowest current cost
 Find the next lowest current cost node, repeat previous step
 Stop when end goal is closed, no other path can be shorter

 A* Algorithm
 Modified version of Dijkstra’s
 Rely on edge costs and cost to go heuristic
 Pick most promising node at each step
 Cost to go heuristic should never be greater than true cost

 Can run all these algorithms from current location 
forward or from end point backward 60
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 Dijkstra’s algorithm
 While best node is not goal

 Move best node from open set to closed set
 Store node, back pointer to previous node and current 

cost 

 Add all neighbouring nodes of best node not currently in 
either set to the open set 

 Store node, current cost and back pointer to best node

 For each node already in the open set, update current cost 
and back pointer if new path is shorter
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 Dijkstra’s Search Algorithm
 Take best node in O and move to C
 Find all neighbours of best node, add 

to O in order of current cost
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 Dijkstra’s Search Algorithm
 If a neighbour node is already in O, 

keep only shortest path to it

63

PLANNING

2

0

3

1

8

9

5

6

7

47

16

9

7

16

9

O C
(2,1,7) (1,-,0)
(3,1,9)
(5,1,16)



 Dijkstra’s Search Algorithm
 Repeat for each node in O
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 Dijkstra’s Search Algorithm
 Repeat for each node in O
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 Dijkstra’s Search Algorithm
 Repeat for each node in O
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 Dijkstra’s Search Algorithm
 Repeat for each node in O
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 Dijkstra’s Search Algorithm
 Repeat for each node in O
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 Dijkstra’s Search Algorithm
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 Dijkstra’s Search Algorithm
 Stop when end node is current 

best node in open list
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 Dijkstra’s Search Algorithm
 Stop when end node is current 

best node in open list
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 Dijkstra’s Example
 100 nodes, all connected to 4 closest neighbours
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 Finding the shortest path over a graph
 Dijkstra’s algorithm

 Start from starting node
 Expand all links out of the node with lowest current cost
 Find the next lowest current cost node, repeat previous step
 Stop when end goal is closed, no other path can be shorter

 A* Algorithm
 Modified version of Dijkstra’s
 Rely on edge costs and cost to go heuristic
 Pick most promising node at each step
 Cost to go heuristic should never be greater than true cost

 Can run all these algorithms from current location 
forward or from end point backward 73
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 A* algorithm
 While best node is not goal

 Move best node from open set to closed set

 Store node, back pointer to previous node, current cost 
and lower bound cost 

 Add all adjacent nodes not currently in either set to the 
open set 

 Store node, current cost, lower bound cost and back 
pointer to nbest

 For each node already in open set, update current cost, 
lower bound cost and back pointer if new path is shorter
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 Step 1
 Add n1 to O with a lower bound cost of 33
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 Step 2
 Take best node in O, move it to C,  store current cost 

and back pointer (0,Null in this case)
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 Step 3
 Add all nodes accessible from best 

node (1) to 0, ordered based on cost 
estimate. If node is already in O, 
update cost estimate and back pointer
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 Step 4: Repeat steps 2 and 3
 Add n6 to 0
 Cost of n1-n3-n5 is greater than n1-n5, 

keep old cost
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 Step 5
 Add n7 to 0
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 Step 6
 Add n4 to 0
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 Step 7
 Add n9 to 0
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 Step 8
 Add n0 to 0
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 Step 9
 Done, node 0 is best node in open list
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 A* Example:
 100 nodes, all connected to 4 closest neighbours
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 Planning Concepts

 Reactive Motion Planning Algorithms
 Bug
 Potential Fields
 Trajectory Rollout

 Graph Based Motion Planning
 Finding paths on graphs

 Wavefront
 Dijkstra, A*, D*

 Generating Graphs from environments
 Visibility Graphs
 Decompositions 85

OUTLINE



 How to make a map into a graph
 Deterministically

 Occupancy Grid-based Graph
 Visibility Graph
 Cell Decomposition
 Voronoi Diagram 
 Constrained Delaunay Triangulation

 Randomly
 Probabilistic roadmaps (PRMs)
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 Occupancy grid to graph
 Each cell is a node
 Can connect to 4,8 or 16 nearest 

neighbours if not occupied
 Edge length either 1 unit or true 

distance
 Wavefront or Dijkstra/A*

 The more connections, the harder 
the search, but the more direct the 
path
 Memory limitations
 Time complexity
 For small 100x100 grid

 10,000 nodes
 20,000, 40,000, 80,000 edges 87
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 Visibility Graph
 If  2D map is defined as a polygon with polygonal 

obstacles (holes)
 Connect all vertices in map to create a visibility graph

 Line of sight between each vertex pair
 Remove all edges that intersect obstacles

 Step 1: Connect start and end point to all visible 
vertices
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 Visibility graph
 Step 2: For each obstacle vertex reached in step 1, 

add all its connections, including connections along 
obstacle edges
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 Visibility Graph
 Step 3: Repeat until no new edges are added
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 Example of Visibility Graph
 Brute force: O(n3) 

 For each connection, check n edge intersections
 10 Convex obstacles
 218 links
 4 seconds
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 Visibility graph
 Can eliminate many unnecessary edges

 All edges that head into obstacle 
 Nodes in regions defined by convex nodes can also be 

ignored

 As a result, concave obstacle nodes can be ignored
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 Example – 2D path 
planning
 30 Obstacles 
 Guaranteed shortest 

path
 Many collision checks

 Connecting all nodes 
requires 7503 edge 
collision checks

 Resulting network has
 122 nodes
 976 edges
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 Example – 2D path planning
 Brute Force Runtime: 30 s

94

PLANNING



 Visibility Graph
 Pros

 Guaranteed to find shortest path
 Fairly quick in 2D

 Cons
 Passes too close to obstacles
 Requires nodes and edges view of the world
 Not possible in 3D
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 Trapezoidal decomposition
 2D map cut vertically at each obstacle vertex
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 Trapezoidal Decomposition
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 Trapezoidal Decompositon
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 Topological graph from decomposition
 Create map by connecting adjacent open cells

 Adjacency graph
 Can connect cell centroids to form path (may 

intersect obstacles)
 Distance between cells is unclear
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 Voronoi Diagram
 An alternative that does not find the shortest path, 

but perhaps the “safest” path
 Each edge is equidistant between two points
 Results in paths that are furthest away from points
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 Voronoi diagrams in Matlab
 Very fast algorithm, relies on qhull software

 Cannot handle non-point obstacles
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 Voronoi Diagrams in Robot Racing Planner
 Detect pylons through peak detect algorithm
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 Voronoi Diagrams in Robot Racing Planner
 Create Voronoi diagram, connect graph, apply A*
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 Voronoi Diagrams in Robot Racing Planner
 Connect graph using bounding box on obstacles, 

apply A*

104

PLANNING



 Voronoi Diagram in Robot Racing Planner
 Simulation results
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 Voronoi Racer vs Trajectory Rollout
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 Voronoi Racer vs Trajectory Rollout
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 Generalized Voronoi Diagram
 Uses distance to object function (same as potential 

fields)
 Find equidistant points between two obstacles
 For polygonal obstacles, results in lines, ellipse segments
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 Example
 Trapezoid centroids connected in a graph
 Graph represents connectivity of space, not navigable 

paths, utility of shortest path is therefore dubious
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 Constrained Delaunay Triangulation
 Complex algorithm, not often used, but interesting
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 Voronoi Diagram in Robot Racing Planning
 Competition results, success!
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 D*
 Dynamic A* algorithm
 Adapted to be finite horizon, replan locally with new link 

information
 Intended for robots that uncover new information as they 

travel
 Solve for a path from start to end using A* from end to start
 If new path length info becomes available

 Affected nodes are marked Raised
 All downstream nodes also marked raised, until all nodes that can be 

affected by the change are marked
 New costs are assigned using the usual update, except that if a node 

cost can be reduced, it is marked Lowered, and all upstream nodes are 
improved

 The result is a sequences of downstream and upstream waves 
updating the costs for only those nodes affected by the new 
information

 Anthony Stentz “The Focussed D* Algorithm for Real-Time 
Replanning”, In Proceedings of the International Joint Conference on 
Artificial Intelligence, August 1995
 See Choset et al. Appendix H for summary 113
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