
ME 597: AUTONOMOUS MOBILE ROBOTICS
SECTION 2 – OPTIMIZATION

Prof. Steven Waslander

 Optimization Theory
 Unconstrained optimization
 Conditions for optimality
 Convexity
 Complexity
 Constrained Optimization
 Dynamic Programming

2
OUTLINE

 Given a function that maps a vector of variables
to the reals

 Find the minimum (or maximum) values of f(x)

 Difficulty of problem depends on properties of f
 Linear vs Nonlinear
 Convex vs Nonconvex
 Continuous vs Non-smooth vs Disjoint

3

UNCONSTRAINED OPTIMIZATION

: nf

min ()
nx

f x

 Minima:
 Local minimum :

4

UNCONSTRAINED OPTIMIZATION

* *

There exists an 0 such that
() (), for all with || ||f x f x x x x

*x

 Minima:
 Global minimum:

5

UNCONSTRAINED OPTIMIZATION

*() (), for all nf x f x x

 For differentiable cost functions, can perform Taylor
series expansion to find optimality conditions

 Taylor series of f(x) about x

6

CONDITIONS FOR OPTIMALITY

21
2() () () () . . .T Tf x x f x f x x x f x x H O T

Courtesy of Wikipedia

 Necessary conditions (NC)
 If x* is a local minimum, difference

between minimum and nearby point
should be non-negative by definition

 Similarly, for a negative step in x, the
difference should be non-negative

7

CONDITIONS FOR OPTIMALITY

* *() () 0f x x f x

xx

()f x

* *() () 0f x x f x

 Necessary conditions (NC)
 As Δx->0, higher order terms in

Taylor series disappear

 First order term must satisfy above
for Δx AND –Δx in each element of x

 Necessary condition for optimality

8

CONDITIONS FOR OPTIMALITY

xx

* *() 0 and () 0T Tf x x f x x

*() 0Tf x
xx

() () ()Tf x x f x f x x

 Sufficient conditions
 Of all points that satisfy necessary

conditions for optimality, which ones are
truly local minima?

 For all small excursions from optimal
solution, cost increases
 Since

 This means

 And so the sufficient condition for x* to be a local
minimum is

9

CONDITIONS FOR OPTIMALITY

2 *() is positive definitef x

*() 0Tf x

21
2() () () 0Tf x x f x x f x x

 Note that these conditions are only useful if the
gradient and Hessian exist

 Otherwise, resort to initial definition of
optimality and demonstrate directly
 Integer optimization

10

OPTIMALITY CONDITIONS

x N

()f x

 Definition: A set, C, is convex if any two points,
x1, x2, in C can be connected by a line entirely in
C.
 That is, for all Ɵ in [0,1], we have

11

CONVEXITY

1 2(1)x x C

Convex Nonconvex

 Definition: A function, f(x), is convex if for any
two points, x1, x2, and for all Ɵ in [0,1], we have

12

CONVEXITY

1 2 1 2((1)) () (1) ()f x x f x f x

Convex Nonconvex

1 2(0.5 0.5)f x x

1 20.5 () 0.5 ()f x f x

1()f x

2()f x

 A convex function has an
epigraph that is a convex set

 Definition: A Convex
Optimization problem is one
where
 f(x) is a convex function
 g(x) is a convex function
 h(x) is an affine function

 This definition ensure the
feasible region is a convex set

 Convex optimization problems
have a unique global minimum! 13

CONVEXITY

Epigraph
of

f(x)

COMPLEXITY ANALYSIS

 (P) – Deterministic Polynomial time algorithm

 (NP) – Non-deterministic Polynomial time
algorithm,
 Feasibility can be determined in polynomial time

 (NP-complete) – NP and at least as hard as
any known NP problem

 (NP-hard) – not provably NP and at least as
hard as any NP problem,
 Optimization over an NP-complete feasibility

problem 14

CONSTRAINED OPTIMIZATION

 Standard form:

 where

 Specific classes of problems, depending on
definitions of X, f, g, h.

 Very specific optimization engines, for every shade
of problem 15

min ()

subject to () 0
() 0

x X
f x

g x
h x

can be any type of set
, , :

X
f g h X

 Linear Program (LP)
 (P) Easy, fast to solve, convex

 Matlab command:
x = linprog(f, A, b, Aeq, beq, LB, UB, x0)

 “How long do you think it would take to solve a problem
with 1 million variables?”… “One second!”
 Stephen Boyd, Stanford 16

OPTIMIZATION PROBLEM TYPES

min

s.t.

n

T

x X

eq eq

f x

Ax b
A x b

 Quadratic Program (QP)
 (P) Quadratic cost with linear constraints O(n3)

 Still fairly easy, fast to solve and convex

 Matlab command:
x = quadprog(Q, A, b, Aeq, beq, LB, UB, x0)

 Kalman filter, LQR (unconstrained)
 In fact, any convex problem can be solved quickly

 Matlab toolbox: cvx 17

OPTIMIZATION PROBLEM TYPES

min

s.t.

n

T

x X

eq eq

x Qx

Ax b
A x b

Non-Linear Program (NLP)
 (P) Convex problems are easy to solve
 Non-convex problems harder, not guaranteed to

find global optimum (local minima can occur)

OPTIMIZATION PROBLEM TYPES
M

E
 780: A

utonom
ous M

obile
R

obotics

18

Mixed Integer Linear Program (MILP)
 (NP-hard) computational complexity

 Exponential growth in complexity
 However, many problems can be solved

surprisingly quickly

MINLP, MILQP etc.

OPTIMIZATION PROBLEM TYPES

min

s.t.

T

x X

eq eq

f x

Ax b
A b

where i rn nX Z

19

 Dynamic Programming
 Richard Bellman (1953): Principle of Optimality

 Applies to multi-period optimization problems
 Discrete problems sum costs at each time step
 Continuous problem costs are an integral over time interval

20

DYNAMIC PROGRAMMING

If a solution is optimal for periods t0 to tf, then the solution over
any subinterval t1 to tf (t0 <= t1 <= tf) must also be optimal

*
0()x t

*()fx t
*

1()x t

 Discrete time case
 In DP, state is state, inputs are actions
 The sequence of all actions is a policy
 Bellman Equation

 Cost is written as a sum of stage costs

 Expressing the principle of optimality

 Jt+1 is the “cost-to-go” 21

DYNAMIC PROGRAMMING

 1min ()
t

t t t tx
J L x J

0 0

0

:() min ()
f

f

t

t t t t t
t t

J x L x

 Can build optimal solutions by working through
smaller sub-problems

 Discrete time, discrete space methods
 Bottom-up

 Solve trivial final stage problem first, then solve one step
backward at a time

 Results in a complete solution to every possible initial state

 Top-down
 Define a recursive program to solve sub-problems from a

specific starting point
 Sub-problem solutions are recorded and not re-solved
 Results in a complete solution to every possible end state 22

DYNAMIC PROGRAMMING

 Maze: Discrete in time and space
 S = Start, F = Finish

23

EXAMPLE

F

S

 Discrete Maze
 JtF = 0, Actions: Left, Up, Right, Down

24

EXAMPLE

0

?

 Discrete Maze
 Stage Cost Lt=1, step backward in time, filling in cost

to go at each cell that can be reached

25

EXAMPLE

0

1

2

3

4

 Discrete Maze
 Continuing …, bottom yellow cell has two options
 Jt = min(Lt + Jt+1) = min(1+10,1+10) = 11

26

EXAMPLE

0

1

10 2

10 9 3

8 7 6 5 4

9 5

10 6

10 9 8 7

 Discrete Maze
 Continuing

27

EXAMPLE

18 14 13 12 13 14 0

18 17 16 15 11 15 1

19 10 2

20 21 11 10 9 3

21 12 8 7 6 5 4

9 5

10 6

11 10 9 8 7

 Discrete Maze
 So the cost from start to finish is 24

28

EXAMPLE

18 14 13 12 13 14 0

18 17 16 15 11 15 1

19 10 2

20 21 11 10 9 3

21 22 12 8 7 6 5 4

22 23 9 5

23 28 10 6

24 25 26 27 11 10 9 8 7

29

EXTRA SLIDES

fT

x1

x2

 Simplex Method
 Optimum must be at the intersection of constraints
 Intersections are easy to find, change inequalities to

equalities, add slack variables
 Jump from one vertex to the next (in a smart way),

until no more improvement is possible

SOLUTION METHODS FOR LINEAR PROGRAMS

30

SOLUTION METHOD FOR LINEAR PROGRAMS

 Interior Point Methods
 Apply Barrier Function to each constraint and sum
 Primal-Dual Formulation
 Newton Step
 At each iteration,

increase slope of barriers
 Benefits

 Scales better than Simplex
 Certificate of Optimality

 Stop whenever
 Know how close to optimal

the current solution is
 Relies on duality

-fT

x1

x2

31

 Sequential Quadratic Programming
 Also an interior point method
 At each iteration, calculate gradient and Hessian of

Lagrangian
 If problem is a quadratic program, apply Newton step

to optimal solution
 If not, use Newton step direction as a descent

direction and apply a line search
 Finding Newton step involves inverse of Hessian

32

SOLUTION METHODS FOR NLPS

SOLUTION METHODS FOR MILPS

Branch and Bound Algorithm
1.Solve LP relaxation for lower bound on cost for

current branch
 If solution exceeds upper bound, branch is

terminated
 If solution is integer, replace upper bound on cost

2.Create two branched problems by adding
constraints to original problem
Select integer variable with fractional LP solution
Add integer constraints to the original LP

3.Repeat until no branches remain, return optimal
solution.

33More details later!

 Constrained minima
 No active constraints = unconstrained
 Active constraints

 Gradient of cost must be perpendicular to active constraint
 Otherwise moving along constraint would reduce cost and

remain feasible
 Can be expressed as

 with Lagrange multiplier λ

34

CONSTRAINED OPTIMIZATION

* * * *(,) (,) 0Tf x y g x y

 Lagrange Multipliers
 By introducing Lagrange multipliers, can convert

constrained problem to an unconstrained problem

 Can directly apply unconstrained optimization
technique to Lagrangian

 Results in expanded necessary and sufficient
conditions for optimality

 In practice, best optimization algorithms treat
constraints differently 35

CONSTRAINED OPTIMIZATION

() () () ()T TL x f x g x h x

 Equality Constraints
 Must be active

 Inequality Constraints (Karush, Kuhn, Tucker)
 If active, Lagrange multipliers are non-negative
 If inactive, Lagrange multipliers are zero

 A(x*) is the set of active constraints 36

CONSTRAINED OPTIMIZATION

* * *(, ,) 0xL x

* 0, 1, ,i i m
* *0, ()i i A x

