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 Review of Probability
 Bayes Filter Framework
 Kalman Filter
 Extended Kalman Filter
 Unscented Particle Filter
 Particle Filter
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OUTLINE



 The Bayes Filter Framework has now been 
adapted to
 Kalman Filter

 Linear models with additive Gaussian noise
 Extended Kalman Filter

 Nonlinear models with additive Gaussian noise

 Both continuous Gaussian methods are 
computationally appealing
 Even for large numbers of state, measurement 

variables
 Benefit arises from ability to maintain Gaussian 

beliefs
 Track only mean and covariance throughout filtering 

process 4
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 In both cases, modeling requirements rule out a 
significant portion of real systems
 Nonlinear systems where linearization is a poor 

approximation over distribution range
 Systems with multiple reasonable hypotheses

 Alternatives include non-parametric filters
 Filters that do not track distribution parameters
 Bayes/Histogram Filter

 Discrete state systems with known probabilities
 Explodes computationally for higher dimensional models 

 Particle Filter
 Maintain a sample set representation of beliefs
 Results can be poor in higher dimensional models
 Also called Sequential Monte Carlo methods 5
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 Modeling assumption
 Instead of assuming Gaussian, tracking μt, ∑t , 

generate a set of sample states from each 
distribution

 Each sample is a hypothesis about the current state

 Properties of the whole collection of samples are used to 
generate estimates

 Not possible to sample belief distribution directly, 
must apply Importance Sampling
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 Example particle sets – density of points defines 
probability
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 Generating samples from a known distribution
 Given a probability density function, draw samples 

with the appropriate probability

 Easy for uniform, Gaussian 
 Use built in Matlab functions

 Harder for arbitrary pdfs, but approximation is 
possible

 Needed in Particle filters to perform measurement 
update
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 Generating samples from a distribution
 Given a state          and a distribution 
1. Create a vector X of evenly spaced values of x over 

the range of interest
 e.g. If g(x) is Gaussian, create X to span ±5σ about mean

2. Create an exact/approximate cumulative 
distribution vector, G(X)
 Integrate probability distribution g(x) to get G(x), and 

create the vector G(X)
 Or sum probabilities g(X) and normalize to get vector G(X)

3. Draw samples from a uniform distribution over [0,1]
4. Find closest value to sample in G(X)
5. Corresponding value of x is a sample, denoted xg

[i]

9

PARTICLE FILTERS

x ( ) : [0,1]g x 



 Sampling of g(x)
 1.

 2.
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 Sampling of g(x)
 3.-5.
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 Importance Sampling
 Goal: perform a calculation using a distribution, f(x), 

but without being able to sample it directly 
 f(x) = Target distribution, unknown

 Can first sample a different distribution, g(x), 
 g(x) = Proposal distribution, known
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 Importance Sampling
Then use relationship between distributions if known to define 

the weighting factor as

 Finally, resample from g(x), with weights w(x) to 
generate samples of f(x)

 If weighting factor is known, can perform this 
calculation without knowing f(x)
 Note that g(x)>0 wherever f(x)>0 for this to be valid
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 Importance Sampling
 Define weights for each sample xg

[i] in S

 Weights are the probability that we should include sample 
xg

[i] in our final sample set
 The importance of sample xg

[i]

 Not obvious how to calculate the weight at this point, will 
become clear in derivation of particle filter

 For now, found by dividing f(xg
[i]) by  g(xg

[i])
 This assumes complete knowledge of f(x),

 (yes, cheating) 14
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 Importance Sampling
 Importance sampling of f(x)

1. Define cumulative distribution W(x) based on weights w(x) 
as before (samples need not be ordered)

2. For each sample
1. Take uniform sample, u[i]

2. Find first element of W(x) that exceeds current sample
3. Add corresponding value of xg

[i] as a sample to sample 
set, S’ 
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 Example
 Target distribution f(x), proposal distribution g(x)
 20000 samples drawn from g(x) (1/25th of samples shown )

16

PARTICLE FILTERS



 Example
 Weights for all x and sample weights for each sample

17

PARTICLE FILTERS



 Example
 Importance sample points to generate new set
 New set is distributed according to f(x)
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 The Particle Set
 A sample can be drawn from a proposal distribution

 The sample is assigned a weight

 The combination of sample and weight is a particle

 The particle set is used to generate an approximation 
to the target distribution

 I is the total number of particles in the set
 The approximation improves as 
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 Defining the usual model elements, in general 
probabilistic form
 State prior

 Motion Model

 Measurement Model

 Only restrictions on model elements are that samples 
can be drawn from them, (probabilities known for all 
conditional values) 20
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 Beliefs
 In particle filters, the belief distributions will be 

represented by particle sets
 The belief

 The predicted belief
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 Particle Filter Algorithm
1. Prediction Transformation

 Transform prior belief particle set to predicted belief 
through sampling

2. Importance factor
 Using measurement, calculate particle importance factor

 Probability of the measurement occurring, given the 
state was defined by the current particle

3. Resampling
 Transform predicted belief particle set to belief using 

importance sampling

 Note: steps 1,2 can be combined into a single loop, if 
prediction and measurement steps are combined 22
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 Particle Filter Components
1. Prediction Update

• The samples          are known from previous iteration
• The motion model and input are known
• It is therefore possible to generate samples of

• One new sample is drawn from each distribution defined 
by the prior samples

• The set of I new samples defines an approximation to
• Unit weighting on each particle    
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 Particle Filter Components
2. Measurement update

 The measurement is known but the state is not
 Would like to generate a particle set to represent bel(xt)

 Target distribution
 Have particle set representation of predicted belief 

 Proposal distribution
 Use importance sampling to generate belief update

 The proper weighting to use turns out to be 
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 Particle Filter Expanded Algorithm 
1. Prediction update

1. For each particle in 
1. Sample 

2. Weight

3. Add to 

2. Measurement update
1. For each particle in 

1. Calculate weighting 

2. For j = 1 to I
1. Draw particle          with probability 

2. Add to         as
25
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 Particle Filter Algorithm (simplified)
1. For each particle in 

1. Propagate sample forward using motion model (sampling) 

2. Calculate weight                                                (importance)

3. Store in interim particle set

2. Normalize weights
3. For j = 1 to I

1. Draw index i with probability                         (resampling)
1. Add to final particle set 26
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 Example
 Robot Localization

 Robot travels along hallway, can detect doors within a 
range with noisy sensor

 Knows probability of detecting a door, given a specific 
location

 Knows motion model, and has uniform initial belief
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 Example
 Step one

 Sample uniformly over state space
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 Example
 Step Two

 Propagate samples through motion model
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 Example
 Step three

 Take a measurement, and use                     to calculate 
weights

 Particles that are more likely have higher weights
 Starting to narrow down position options
 Still difficult to estimate state (mean?) 30
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 Example
 Step four

 Perform resampling to get more particles in areas of higher 
probability

 Reset weights to 1, as particle locations capture probability 
information

 Repeat
 The following particle set shows how the motion 

model distributes the identical particles that result 
from resampling
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 Example
 After a second measurement, weights are again 

assigned to the particles

 True state starts to become apparent

32

PARTICLE FILTERS



 Example
 After resampling again, propagate with motion model 

sampling
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 Derivation 
 Consider the particles as state sequence samples

 Form belief over entire sequence

 Instead of just

 This is an enormous state to approximate with a set 
of particles, but no matter, for derivation only
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 Derivation
 Using Bayes Theorem, expand belief about last 

measurement

 The Markov assumption remains valid
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 Derivation
 Conditional probability can be used to expand the 

last distribution 

 Apply the Markov assumption again yields
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 Derivation
 The sequence x0:t-1 does not depend on ut

 Breaking into steps
 Prediction

 ith particle generated by this distribution is an element of 
the predicted belief particle set
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 Derivation
 The measurement update uses importance sampling 

to generate a particle set representation of belief
 Weighting, based on relation to predicted belief is

 Which confirms use of measurement model as weighting 
parameter

 This confirms that particles sets are distributed according 
to full belief sequences, which means must hold for current 
state too 38
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 Example
 Returning to the temperature control problem

 State is current temperature
 One dimensional example
 Prior: Uniform over temperature range 

 Motion Model: Decaying temperature + furnace input + 
disturbances (opening doors, outside effects)
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 Example
 Measurement Model

 Directly measure the current temperature

 Controller design
 Bang bang control, based on current estimate of 

temperature
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 Particle filter calculations
1. Transform and sample from Gaussian

2. Define weights from measurement model, with 
Gaussian noise centered at predicted measurement 
location

3. Resample from predicted belief particle set using 
weights to generate belief particle set 41
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 Resulting particle filter code
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%Particle filter estimation
for i=1:I

e = sqrt(R)*randn(1);
Xp(i) = A*X(i) + B*u(t) + e;
w(i) = normpdf(y(t),C*Xp(i),Q);

end
W = cumsum(w);
W = W/max(W);
for j=1:I

i = find(W>rand(1),1);
X(j) = Xp(i);

end



 Priors, comparing KF and Particle filter
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 Prediction
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 Belief
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 Comparison of Gaussian parameters
 KF vs PF (1000, 100, 10)
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 Comparison of Gaussian parameters
 KF vs PF (1000, 100, 10)
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 Comparison of Gaussian parameters
 KF vs PF (1000, 100, 10)
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 Comparison of run times
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Algorithm Run Time
Kalman Filter 0.005164
Particle Filter -10 0.043191
Particle Filter -20 0.06965
Particle Filter -100 0.2188
Particle Filter -1000 1.8740



 EKF/UKF/Particle showdown
 Aircraft flyover example
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 Results
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 Not always better, hard to tune
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 Interpreting particle sets
 In order to use a particle filter, must somehow 

extract relevant information from particles
 Density Extraction

 Determining a probability density function from a set of 
particles
 Gaussian approximation

 Simply calculate mean and covariance of set
 Only really useful for unimodal distributions
 Used most often for control applications 

 K-means algorithm
 Approximate density with a mixture of K Gaussians
 Requires clustering of particles

 Kernel density estimation
 Use each particle as the center of a continuous kernel 

function
 Add all kernels together to generate a pdf
 Linear in the number of particles
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 Sample Variance
 Since continuous distributions are approximated by a 

discrete set of samples, errors occur
 Each time a particle filter is run (with random 

sampling) a different particle set will result

 Extreme case:
 No motion 
 No measurements, uniform weights on each particle 
 Uniform prior over 2D space
 What will happen to the particle set as we update the 

particle filter?
 Essentially repeating the resampling step with uniform 

weight on all particles.
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 Example
 Particle deprivation
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 Excessive resampling can lead to particle 
deprivation
 Motion sampling adds variety to particle set
 Do not resample when no motion occurs

 Instead update weights multiplicatively for each 
measurement

 If problems arise
 Apply low variance sampling
 Artificially disperse samples as well
 Add random samples after resampling

 Referred to as variance reduction
 Reducing the variance in the particle set approximation
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 Summary
 Use particle sets instead of parameterizations to 

represent distributions
 Inherently an approximation, introduces errors
 Propagate samples through motion model by 

sampling from model distribution
 Weight samples using measurement probability 

given sample state as true state
 Define belief distribution through samples and 

weights (particles) or post resampling
 Many extensions, nuances, issues, advanced 

techniques
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