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COMPONENTS

Actuators Vehicle Sensors

Control Estimation

Hardware 

Vehicle Autonomy

Environmental Autonomy

Path 
Planning Mapping

Mission Autonomy

Mission 
Planning

Mission
Mapping



 Localization
 EKF
 Particle

 Mapping
 Occupancy Grid based

 Simultaneous Localization and Mapping
 EKF SLAM
 Particle based FastSLAM
 Occupancy Grid SLAM
 Iterated Closest Point Scan Matching
 Pose Graph Optimization
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OUTLINE



 SLAM
 Given

 Motion model
 Measurement model
 Uniquely identifiable static features
 Vehicle inputs, ut

 Measurements to some features, yt

 Find
 Vehicle state, xt

r

 Feature locations, mi

 Relative calculation, coordinate system determined upon 
initialization

 Significantly larger estimation problem than straight 
localization
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SIMULTANEOUS LOCALIZATION AND MAPPING



 SLAM Types
 Online SLAM

 Estimates the current state and the map given all 
information to date

 Most useful for a moving vehicle that needs to estimate its 
state relative to its environment in real time

 Usually run online

 Full SLAM
 Estimates the entire state history and the map given all 

information 

 Most useful for creating maps from sensor data after the fact
 Usually run in batch mode
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 The four main SLAM Algorithms in Thrun
 EKF/UKF SLAM (Thrun et al. Chap 10)

 Extension of EKF localization to online SLAM problem
 Very commonly used, especially for improving vehicle state 

estimation when static features are available

 GraphSLAM (Thrun et al. Chap 11)
 Solves the full SLAM problem by storing data as a set of 

constraints between variables 
 Can create maps based on 1000s of features, not possible 

with EKF due to matrix inversion limitations
 Many variations, all boil down to a nonlinear optimization 

that needs to be fast to be useful
6

SLAM



 The four main SLAM Algorithms in Thrun
 Sparse Extended Information Filter SLAM (Thrun et 

al. Chap 12)
 Approximate application of Extended Information Filter to 

SLAM problem
 Can create a sparse (nearly diagonal) information matrix, 

which also enables tracking many features, constant time 
updates

 FastSLAM (Thrun et al. Chap 13)
 Solves the online SLAM problem simultaneously by 

combining particles and EKFs
 Rao-Blackwellized particle filters

 Can track multiple correspondences with different particles
 Shows robustness to incorrect correspondence
 Most active area of research, large scale mapping
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SLAM



 Our focus is the online SLAM problem
 EKF SLAM

 Quick SLAM solution, great for improving vehicle state 
estimation from information about the environment

 Not too robust to incorrect feature correspondence
 Be sure to pick features wisely 

 FastSLAM
 A more robust approach, particularly with respect to 

feature correspondence
 Computationally more expensive, especially with higher 

dimension vehicle state
 Occupancy Grid SLAM

 FastSLAM with mapping by each pixel

 But, I’ll introduce GraphSLAM too
 Predominant area of research over the last decade
 Super-impressive results
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SLAM



 A brittle problem, regardless of algorithm
 Attempting to estimate nT + fM states using MT, 

2MT, 3MT measurements, depending on sensor
 T is the number of time steps
 M is the number of features
 n is the number of vehicle state variables
 f is the number of map feature variables

 Direct sensing of vehicle states can significantly 
improve estimation
 GPS, odometry information very effective at reducing 

uncertainty
 Use what you can
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SLAM



 Variables
 Full state

 Vehicle states
 Feature locations
 Signatures

 Not included here

 Belief: Full state mean and covariance
 Components for vehicle state and map state 
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EKF SLAM
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 Once again, investigate with a specific vehicle 
and measurement model

 Motion model for robot only
 Feature are static, no motion
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EKF SLAM
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 Measurement Model
 Relative range and/or bearing to numerous features 

mi in  field of view
 Define

 Then 

 Noise 12

EKF SLAM
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 Vehicle Prior
 In localization or mapping, coordinate system was 

clearly defined
 Localization relative to fixed map
 Mapping relative to known vehicle motion

 In pure SLAM, neither is known, so coordinate 
system is arbitrary choice
 Assume vehicle starts at origin with zero heading
 Know this with absolute certainty
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EKF SLAM
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 Map Prior
 No clue where any of the features are

 Theoretically, we could say

 In practice, not very useful
 Linearization with all features assumed to be at the 

origin performs very poorly
 Inversion with infinite diagonal numerically difficult
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EKF SLAM
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 Map Prior
 Preferred method

 Initialize each feature location based on first set of 
measurements
 Measurements must uniquely define feature position
 Bearing and range + vehicle state required

 Can define covariance based on measurement noise and 
vehicle state uncertainty, or predefine explicitly

 If initial measurements are insufficient, can accumulate 
multiple measurements before initialization
 Bearing only SLAM (for vision data) 15

EKF SLAM
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 A sketch
 A vehicle and a set of features, perfect knowledge of 

vehicle location initially 

 The vehicle measures the location of two features and 
moves one time step forward
 Measurement and motion uncertainty
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EKF SLAM



 A sketch
 At the next time step, two new features are observed 

with more uncertainty
 Combination of vehicle and measurement uncertainty
 Motion uncertainty continues to grow
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EKF SLAM



 A sketch
 The next set of measurements includes a feature that 

has already been observed
 The vehicle uncertainty can be reduced
 The additional features are not as uncertain

 The result: as old features are discarded and new 
features added, uncertainty grows 18

EKF SLAM



 EKF SLAM Algorithm
 Prediction step

 Only vehicle states and covariance change
 Map states and covariance are unaffected
 Quick 3X3 update
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EKF SLAM
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 Linearization of Motion Model, as before
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EKF SLAM
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 EKF SLAM Algorithm
 Measurement Update, for feature i

 Since each measurement pair depends on one feature, 
independence means updates can be performed one feature 
at a time
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EKF SLAM
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 Linearization of Measurement Model

 Derivatives w.r.t. mi in appropriate columns
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EKF SLAM

2 2 2 21 0  0 0  0
( )

0 0  0 0  0

i i i i
t t t t

i i
t t i i i i

t t t t t

dy dx dy dx
r r r rH h x

x dx dy dx dy
r r r r

      
   

  

 

 

   

1
3,

1,

2, 2 2

tan
( )

i
rti tit i t

ti
t i i

t t

dy xy dxh x
y

dx dy

  
         

   
  



 Example
 22 features in two lines
 Same circular motion as for localization example
 Field of view similar to camera

 +/- 45 degrees
 5 m range
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EKF SLAM



 Example
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EKF SLAM
True state            -o-
Belief                    -x-
Measurement     ___
Features               O



 Discussion
 Vehicle state error correlates feature estimates

 If vehicle state known exactly (mapping) features could be 
estimated independently

 Knowing more about one feature improves estimates about 
entire map

 Covariance matrix divided in 3X3 structure
 Vehicle state and two sets of features
 Each row of features strongly connected
 Rows weakly connected by uncertain multiple time step 

motion 

 Growth in state uncertainty without loop closure 
 When first feature is re-observed, all estimates improve
 Correction information carried in covariance matrix 25

EKF SLAM



 Wrong correspondence can be catastrophic
 Linearization about wrong point can cause deterioration of 

estimate, divergence of covariance

 Strategies
 Provisional Feature list

 Features on the list are tracked identically to other features
 Not used to update vehicle state or  vehicle/map covariance
 Once trace of covariance drops below threshold, incorporate feature into 

map

 Feature selection
 Features are selected so as to avoid correspondence issues

 Spatially distributed
 Distinct signatures 

 Feature Tracking and windowed correspondence
 Features can be expected to move in a consistent way from frame to 

frame, so only a subset of features need be considered for matches
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EKF SLAM



 Localization
 EKF
 Particle

 Mapping
 Occupancy Grid based

 Simultaneous Localization and Mapping
 EKF SLAM
 Particle based FastSLAM
 Occupancy Grid SLAM
 Iterated Closest Point Scan Matching
 Pose Graph Optimization
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OUTLINE



 Divergence Issue with EKF primarily due to 
linearization about incorrect estimate
 Fails when linearization is a poor approximation

 Features at close range accentuate issue

 Particle filters avoid this linearization
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FASTSLAM



 Recall Particle Filter Algorithm 
1. For each particle in 

1. Propagate sample forward using motion model (sampling) 

2. Calculate weight                                                (importance)

3. Store in interim particle set

2. Normalize weights
3. For j = 1 to I

1. Draw index i with probability                         (resampling)
1. Add to final particle set 29

FASTSLAM

1tS 

[ ] [ ]
1~ ( | , )r i r r i

t t t tx p x x u

[ ] [ ]( | )i r i
t t tw p y x

[ ]i
tw

[ ]' ' { }it t tS S s 

[ ]{ }it t tS S s 



 Direct Particle Filter approach
 Applied to example SLAM problem, state is too large 

to capture distributions with particles
 Exponential growth in number of particles needed per 

dimension of the problem

 SLAM problem has significant structure
 Map features do not move
 Measurements depend on only the vehicle state and one 

feature

 Need a way to avoid issues of EKF and particle filters
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FASTSLAM



 Rao-Blackwellized Particle Filter
 The vehicle state will be estimated with particles
 Each feature will be estimated with an independent 

EKF
 Each particle has the vehicle state and a bank of 

EKFs, one for each feature in the map
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FASTSLAM
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 Key Insight
 If vehicle state is known exactly, feature locations 

can be estimated independently

 In a particle filter, each particle represents an exact 
belief about the state

 Representing vehicle state belief with particles allows 
independent estimation of features for each particle
 M+1 separate independent beliefs
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FASTSLAM
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 Hidden Markov Model
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FASTSLAM

xt-1

ut-1

yt-1

xt

ut

yt

…x0 x1

u1

y1

Motion Model

Measurement Model m1 m2



 Feature Correspondence
 Can also be incorporated, each particle need not use 

the same correspondence decisions
 Avoids issue with EKF
 Larger estimation problem, more particles needed 
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FASTSLAM
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FASTSLAM – PREDICTION STEP

Particle 1

Particle 2

Particle 3

Feature #1
Filter

Feature #2
Filter
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Courtesy of Thrun et al.



FASTSLAM – MEASUREMENT UPDATE

Particle 1

Particle 2

Particle 3

Feature #1
Filter

Feature #2
Filter
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Courtesy of Thrun et al.



FASTSLAM – SENSOR UPDATE

Particle 1

Particle 2

Particle 3

Weight = 0.8

Weight = 0.4

Weight = 0.1
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Courtesy of Thrun et al.



 Prediction Step
 Like Particle filter localization, propagate each 

particle through motion model with disturbance 
sample

 O(I), linear in the number of particles

38

FASTSLAM
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 Measurement Update
 For each particle

 Initialize EKF for each newly observed feature
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FASTSLAM
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 Measurement Update
 For each particle

 Update individual EKF for each previously observed feature
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FASTSLAM
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 Measurement Update
 Importance sampling

 Particle Weights are probability of measurement given 
particle state

 Found by linearizing about particle state

 Resampling as before
 Draw I samples from existing particles based on 

measurement model weights 41

FASTSLAM
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 Example
 Two wheeled robot motion, going in a circle
 Range and bearing measurements to features in view

 5 m range, 50 deg FOV
 100 particles, all means displayed
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FASTSLAM



 Example
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FASTSLAM



FASTSLAM
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 Victoria Park
 4 km traverse
 < 5 m RMS 

position error
 100 particles

Dataset courtesy of University of Sydney
Results courtesy of Thrun et al.

Blue = GPS
Yellow = FastSLAM



FASTSLAM
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 Results from Victoria Park data set
 Raw odometry vs FastSLAM with GPS ground truth



FASTSLAM
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 Results from Victoria Park data set
 FastSLAM with GPS ground truth on satellite image
 Ignoring odometry data, still successful



 FastSLAM 2.0
 Improves motion update sampling to include 

measurement information
 Useful when motion is relatively uncertain compared to 

measurements
 Results in a better proposal distribution, which means less 

likely to encounter particle deprivation 
 Target distribution is closer to proposal
 More particles present good estimates of the true state
 More particles are weighted highly meaning more make 

it through resampling

 Allows us to improve accuracy of estimation and/or reduce 
the number of particles needed

 Useful for occupancy grid SLAM 47

FASTSLAM



 Localization
 EKF
 Particle

 Mapping
 Occupancy Grid based

 Simultaneous Localization and Mapping
 EKF SLAM
 Particle based FastSLAM
 Occupancy Grid SLAM
 Iterated Closest Point Scan Matching
 Pose Graph Optimization
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OUTLINE



 Example
 Bruceton 

Research Mine
 Results courtesy 

of Dirk Haehnel
 Laser data 

collected while 
driving through 
underground 
mine
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OCCUPANCY GRID SLAM
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OCCUPANCY GRID SLAM
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 Occupancy grid based FastSLAM
 Starting from the same belief representation as the 

FastSLAM algorithm
 Instead of treating each feature individually, we think of 

the map as an occupancy grid problem
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 Occupancy grid based FastSLAM: gmapping!
 Creates complete map of the environment within 

each particle

 Each cell becomes a feature with a probability of 
being occupied

 Motion predictions can be improved by employing 
scan registration techniques

 Weights are determined using measurement model, 
resampling as before

 Occupancy probabilities are updated through inverse 
measurement model 51

OCCUPANCY GRID SLAM



For each 
particle
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OCCUPANCY GRID SLAM

1. Scan 
Registration

2. Motion 
Update

3. Weighting

Resampling

Relative 
Motion 
Estimate Updated 

Particles

New 
Scan

Map 
Update

 Occupancy grid based FastSLAM
 Three new elements



 Improved prediction step using scan registration
 Disturbance distribution is dependent on scan and 

map
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OCCUPANCY GRID SLAM

Motion model Measurement models



 Prediction step using scan registration
 The idea is to include the current measurement 

information when updating particle location, but 
before incorporating it in the map
 Apply measurement to robot pose only, save map update for 

later
 Measurement model far more precise than motion model
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OCCUPANCY GRID SLAM
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 Prediction step using scan registration
 Use scan registration to define transformation

 Iterative Closest Point: Given two laser scans, 
optimize the transformation between them by 
corresponding the closest points and minimizing the 
mean squared error.

 Variants/Improvements
 Generalized Iterative Closest Point : match normals
 Normal Distribution Transform : convert to grid of 

Gaussians
 Feature correspondence: only match feature points
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OCCUPANCY GRID SLAM



 Scan Registration Example – ICP matlab code
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OCCUPANCY GRID SLAM



 Scan Registration Example – ICP on laser data
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OCCUPANCY GRID SLAM



 Prediction step using scan registration
 Result of scan registration

 Rotation and translation needed to match new scan to 
previous scan or current map.

 Provides a transformation to apply to particle robot state

 Must also derive disturbance distribution from which to 
sample  a disturbance to apply to each particle
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OCCUPANCY GRID SLAM
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 Prediction step using scan registration
 In order to combine measurement model and motion 

model, need to evaluate both over region around scan 
registration estimate

 Applying the Markov assumption

 And Bayes Theorem + Markov
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OCCUPANCY GRID SLAM
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Motion model
Measurement 
model



 Prediction step using scan registration
 Create samples around scan point, and propagate 

through motion and measurement models using 
Gaussian approximation
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OCCUPANCY GRID SLAM
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 Prediction step using scan registration
 Measurement model

 Given scan registration result, compute for each particle

 Done by multiplying probabilities in each cell traversed by 
scan
 Let       be the measurement {occupied or not occupied} 

for each cell j along the ray defined by a measurement k

 Then the likelihood of a measurement given the map is
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OCCUPANCY GRID SLAM
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 Weighting 
 Importance sampling

 Particle Weights can also be computed quickly through the 
following update equation

 Derived from definitions of

 Where π is the improved proposal distribution discussed 
above 62

OCCUPANCY GRID SLAM
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 Resampling
 Most dangerous step of Particle filter update

 Can lose good particles, lead to deprivation
 Only perform resampling updates when necessary

 Adaptive resampling based on threshold

 Reaches a maximum when all particles are equally 
weighted

 Becomes smaller as some particles are more heavily 
weighted than others
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OCCUPANCY GRID SLAM
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 Map Update
 Since each particle has a known position, standard 

mapping update applies

 The log odd ratio at t is the sum of the ratio at t-1 + the 
inverse measurement ratio – the initial belief

 Once again relies on inverse measurement model

 Can be delayed to after resampling to reduce number 
of updates required
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OCCUPANCY GRID SLAM
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 Example Results for gmapping
 Intel Research Lab

 28 m X 28 m, 2D SICK Lidar
 Only 15 particles needed for maximum accuracy
 Can be run in real time

 MIT Kilian Court
 The infinite corridor, 250m X 215m
 60-80 particles used
 Nested loops
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OCCUPANCY GRID SLAM



 Intel Results – Map using only integrated wheel 
odometry (Dirk Haehnel)
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OCCUPANCY GRID SLAM



 Results of Occupancy Grid SLAM with standard 
motion model 
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OCCUPANCY GRID SLAM
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OCCUPANCY GRID SLAM
 Results of Occupancy Grid SLAM with improved 

proposal distribution (motion and measurement) 



 Results of Occupancy Grid SLAM with improved 
proposal distribution
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OCCUPANCY GRID SLAM



 MIT Results – 80 particles
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OCCUPANCY GRID SLAM
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OUTLINE



 Widely used for 3D modeling, robotics, map 
alignment, image stitching
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SCAN REGISTRATION

Matt Chiang, Jay Busch @  USC Graphics Lab



 Widely used for 3D modeling, robotics, map 
alignment, image stitching
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SCAN REGISTRATION

Matt Chiang, Jay Busch @  USC Graphics Lab



 Let M be a model (reference) point set. 
 Let S be a scene (target) point set.

 We assume for now that:
 NM = NS.
 Each point Si correspond to a point in Mi .
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ITERATIVE CLOSEST POINT ALGORITHM



 The transformation between the two scans is 
represented as a rotation and a translation

 If correct correspondences are known, can find 
relative rotation/translation that minimizes error
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ITERATIVE CLOSEST POINT ALGORITHM
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 Given two scans and an initial transformation:
 Transform scene point set into model frame
 Find nearest neighbour correspondences
 Sum quadratic distance error between points
 Calculate descent direction and improve 

transformation 
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ITERATIVE CLOSEST POINT ALGORITHM



 The unconstrained optimization cost function is

 Where the optimization variables are parameters 
that define the rotation and translation
 Euler angles, quaternions etc.
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ITERATIVE CLOSEST POINT ALGORITHM
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 Most expensive part to compute is nearest 
neighbour
 Brute force  is O(n2) 

 Must be repeated each optimization iteration

 KD-tree is most widely used improvement
 K-dimensional tree
 Construction time: O(knlog(n))
 Space: O(n)
 Search time: O(log(n)) 
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ITERATIVE CLOSEST POINT ALGORITHM



 2D-Tree construction
 Median slicing

 Select axis, find median, divide points around median
 Repeat for each subsection
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ITERATIVE CLOSEST POINT ALGORITHM



 3D-Tree

80

ITERATIVE CLOSEST POINT ALGORITHM



 Can also perform insertion
 Not needed for ICP

 Nearest neighbour lookup
 Given a point p

 Start at root node, proceed left or right down tree, selecting 
the side that contains the point

 Once a point is found (leaf of the tree), set as the current 
best (upper bound on closest distance)

 Backtrack and check other branches that are not eliminated 
by branch and bound until nearest neighbour is guaranteed
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ITERATIVE CLOSEST POINT ALGORITHM



 Matlab Example
 Uses ICP code from Jakob Wilm and Martin Kjer, 

Technical University of Denmark, 2012
 Working on an interesting map
 Robot drives in a big circle, quantum tunnels through 

obstacles
 Scan registration shown relative to true robot pose at 

t-1.
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ITERATIVE CLOSEST POINT ALGORITHM



 Scan registration
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ITERATIVE CLOSEST POINT ALGORITHM



 Resulting Map with scan matching only
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ITERATIVE CLOSEST POINT ALGORITHM



 Resulting Map with motion model only
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ITERATIVE CLOSEST POINT ALGORITHM



 Updated 2D code for 2014
 Based on code from Ajmal Saeed Mian at CMU in 

2005
 Simpler, easier to modify
 Uses singular value decomposition to identify 

transformation steps
 More detailed map, more scan points, more accurate 

registrations

 Accurate enough to simply accumulate registrations
 Slowly growing error, with bias

 Added easy collision avoidance
 Turn right if something is directly in front of robot

ITERATIVE CLOSEST POINT ALGORITHM
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ITERATIVE CLOSEST POINT ALGORITHM

87

 Updated 2D ICP code for 2014


