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 Scalar, Vector, Matrix

 Fat matrix: n<m, Skinny matrix: n>m

 Unit Vector, Identity Matrix
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 Matrix Transpose

 Matrix Addition

 Matrix Multiplication
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 Matrix Transpose of Added Matrices

 Matrix Transpose of Multiplied Matrices

 Quadratic form
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Quadratic term



 Matrix Rank:
 The number of independent rows or columns
 Nonsingular = Full Rank

 Singular = Not full rank

 Non-empty nullspace

 Matrix Inverse (square A)

 Nonsingular and square <=> Invertible
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 Matrix Trace

 Symmetric Matrix

 Positive Definiteness (Semi-Definiteness)
 For a symmetric nXn matrix A, and for any x in Rn
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 Eigenvalues and Eigenvectors of a matrix
 For a matrix A, the vector x is an eigenvector of A 

with a corresponding eigenvalue λ if they satisfy the 
equation

 The eigenvalues of a diagonal matrix are its diagonal 
elements 

 The inverse of A exists if and only if (iff) none of the 
eigenvalues are zero

 Positive definite A has all eigenvalues greater than zero
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 Differentiation of linear matrix equation

 Differentiation of a quadratic matrix equation
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 Least Squares Solution
 If A is a skinny matrix (n>m), and we wish to find x 

for which

 Since A is skinny, the problem is over-constrained 
 No solution exists

 Instead, minimize the square of the error between Ax
and b
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 Setting the derivative to zero

 Known as the pseudo-inverse

 This methodology is used over and over in the course
 Quadratic cost minimized to find closed form solution
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 Least Squares example
 Data fitting with polynomials

 Given a function of interest

 And a set of measurements b(tm)of that function at points tm

 Find the best polynomial fit for polynomial fP(t) of order P
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 Least Squares example
 Can formulate this as a least squares problem where 

we want to minimize the mean square error between 
polynomial prediction and measurement at each tm:

 The polynomial can be written as

 Use least squares solution method to find coefficients of f.
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5th order
10 Points

15th order
10 Points

5th order
100 Points

15th order
100 Points



SISO CONTROL

 One input, one output, one transfer function between 
the two

 Model requires
 transfer function from single input to single output
 initial conditions to start from (usually assumed 0)

 Model hides inner workings of plant
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STATE SPACE: A NEW SYSTEM MODEL

 Multi-Input-Multi-Output (MIMO) model, maintains 
complete plant picture
 Matrix and vector notation, use power of linear algebra for 

many key results

 Definition: The state of a system is a vector of system 
variables that entirely defines the system at a specific 
instance in time.
 Example: at t=0, initial conditions define a state vector.
 Entire history of state variables can be discarded, only 

need current state and system dynamics to continue 
forward in time. 15



STANDARD FORM DYNAMICS

 Linear first order time-invariant dynamics in 
continuous time
 Update equation

 Measurement equation

 A, B matrices: state derivatives can depend on any state or 
input variable

 C, D matrices: output can depend on any state or input 
variable

( ) ( ) ( )x t Ax t Bu t 

( ) ( ) ( )y t Cx t Du t 
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STANDARD FORM DYNAMICS

 Linear first order time-invariant dynamics in discrete 
time
 Update equation, timesteps indexed by t

 Measurement equation

 A, B matrices: state update can depend on any state or 
input variable

 C, D matrices: measurements can depend on any state or 
input variable

1t t tx Ax Bu 

t t ty Cx Du 
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 Equation of Motion

 Transfer function

 Four variables in ODE: one input, one variable 
defined by ODE, two states remain. 

EXAMPLE – SPRING MASS DAMPER
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 Motion Model

 Measurement model: position and velocity sensors

EXAMPLE CONT’D
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IN TRANSFER FUNCTION FORM

 Take Laplace transform of update equation

 Solve for X(s), with x(0)=0

 Combine with measurement model

( ) ( ) ( )dx t Ax t Bu t
dt
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BLOCK DIAGRAM

 Continuous LTI State space model as a block 
diagram (Laplace Domain)
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EXAMPLE: FIND TFS
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EXAMPLE: FIND TFS
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 So roots of det(sI-A) determine poles of open loop system
 Well known equation in linear algebra: eigenvalues/eigenvectors
 Open loop poles are eigenvalues of A
 Holds for all sizes of A, not just 2X2
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STATE FEEDBACK CONTROL

 If C = I and D = 0, full state feedback
 More than one signal, in fact everything we could possibly 

need

 Assume R(s) = 0 (regulator)
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STATE FEEDBACK

 Closed loop transfer function

 Now, eigenvalues of A-BK are poles of closed loop 
system

 In fact, since there is one K for every eigenvalue, 
we can place the closed loop poles anywhere we’d 
like.
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EXAMPLE: POLE PLACEMENT

 Lets place closed loop poles at
 Note:

 Match coefficients of polynomials
 Desired = actual
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EXAMPLE: CONTROLLER

 What is full state feedback?

 PD control
 To add integral control, add an 

integrator state
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CONTROLLABILITY

 Can I get there from here?

 A system is controllable if for any set of initial and 
final states, x(0) and x(T), there exists a control input 
sequence, u(0) to u(T), to get from x(0) to x(T).

 Can be checked easily: The following matrix must be 
full rank

 2 1rank nB AB A B A B n   

28



OBSERVABILITY

 Can I see there from here? 
 Given any sequence of states x(0) to x(T), inputs u(0) 

to u(T) and outputs y(0) to y(T), a system is 
observable if the state can be uniquely determined 
from the outputs alone. 

 Again, an easy check on the observability matrix 
determines if a system is observable
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OPTIMAL CONTROL

 Since we can place poles anywhere, can change 
objective of control design

 Minimize quadratic errors in states and 
quadratic use of inputs

 Penalize big deviations more heavily that small ones
 Quadratic cost and linear dynamics result in a time 

invariant control law, another way to set the gains 
for state feedback control
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OPTIMAL ESTIMATION

 The second half of the model describes the relationship 
between the state and the measured outputs.
 Any sensor dynamics must be included in the state

 In reality, both disturbances and noise will exist

 Assume w, v are Gaussian white noise with covariance Q, 
R

 Assume u(t) is known exactly
 Formulate minimum mean squared error estimation 

problem, results in Kalman filter

( ) ( ) ( ) ( )x t Ax t Bu t w t  

( ) ( ) ( ) ( )y t Cx t Du t v t  
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STATE SPACE MODEL
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