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 Example Videos
 Wheeled, Legged, Aerial, Aquatic

 Motion Modeling
 Definitions
 Kinematics and Dynamics
 Standard models and disturbances
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OUTLINE
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SWEDISH WHEELS IN ACTION
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LEGGED ROBOTS IN ACTION
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LEGGED ROBOTS IN ACTION
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AERIAL ROBOTS IN ACTION
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AERIAL ROBOTS IN ACTION
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AERIAL ROBOTS IN ACTION
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AQUATIC ROBOTS IN ACTION
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AQUATIC ROBOTS IN ACTION
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AQUATIC ROBOTS IN ACTION



 Example Videos
 Wheeled, Legged, Aerial, Aquatic

 Motion Modeling
 Definitions
 Kinematics and Dynamics
 Standard models and disturbances
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OUTLINE



 A motion model seeks to describe how system 
motion can occur
 Given inputs (T), what will the system do (Ɵ)?
 Define a set of constraints between states and inputs
 Define unknown disturbances as distributions (ɛ)
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MOTION MODELING
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STATE

 The state may include variables describing only 
the vehicle, or the vehicle and it’s environment

 Common Vehicle States: Position, Velocity, Attitude, 
Attitude Rates, Motor Speeds, Battery/Fuel Level

 Common Environment States: Feature Locations, 
Surface Polygons and Normals, Wind Conditions, 
Ocean Currents 

Recall: The state of a system is a vector of 
system variables that entirely defines the system 
at a specific instance in time.



 Known as the Markov Assumption
 Ensures that past and future states are independent if the 

current state is known

 Very useful for estimation and control
 No need to store excessive amounts of data, only the 

current state

 Must balance size of model (number of states) with 
violations of Markov assumption
 Ignoring the state of wind on an aircraft leads to 

significant errors in velocity control
 However, integral control can accommodate
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COMPLETE STATE

Definition: A state vector is complete if it is the 
best predictor of the future. 



 The same notion as in classical and state space 
controls 

 Common vehicle inputs:
 Motor throttle, voltage, servo pwm command, 

steering angle, elevator angle

 Referred to as control actions in Thrun et al.
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INPUTS

Definition: The inputs of a system are the set of 
variables that drive the system that can be controlled.



 Disturbances are why we need a control system 
(and stability), cause uncertainty in state

 The better the model of disturbances, the better 
their effect can be rejected.

 Most common model used is additive Gaussian
 Often then augmented with linear, nonlinear 

mapping 18

DISTURBANCES

Definition: The disturbances of a system are the set of 
variables that drive the system that cannot be 
controlled.



 The discrete time motion model is defined as 

 xt is the state vector at time t

 ut is the input vector at time t

 Ɛt is the disturbance to the system at time t
 e.g. 

 f(xt-1,ut, Ɛt) is the motion model
 Can be linear, nonlinear, discontinuous, hybrid
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MOTION MODEL
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 The Markov assumption implies the following 
dependencies

 The motion model captures a single transition 
from one time period to the next
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MOTION MODEL
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 Linear models with additive Gaussian 
disturbances
 Linear models satisfy superposition
 Can always be written in standard form

 Nonlinear models with additive Gaussian 
disturbances

 Nonlinear models with nonlinear disturbances
21

MOTION MODEL TYPES
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 Motion models can be viewed in other ways
 Probabilistically, the probability of ending in state xt

given input ut and prior state xt-1

 Continuous time, the rate of change of the states is 
governed by a nonlinear function of state, input and 
disturbances
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MOTION MODEL TYPES
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 Degrees of freedom vs. states
 Degrees of freedom are axes of independent motion, 

whereas states may also include derivatives and 
other terms.
 A quadrotor has 6 degrees of freedom (X, Y, Z, roll, pitch, 

yaw) but at least 12 states.

 Constraints on the motion
 Holonomic vs. nonholonomic constraints

 Holonomic constraints depend only on the “position” of the 
vehicle 
 On the states that define the degrees of freedom

 Nonholonomic constraints also depend on velocity (or the 
derivatives of the position)
 On all states, on how a vehicle moves 23

MOTION MODELS



 At low speeds, it is often sufficient to look only at 
kinematic models of vehicles
 Two wheeled robot
 Bicycle model

 However, when forces vary with the state, more 
precise modeling can be beneficial
 Dynamic modeling of cars for cruise control
 Quadrotor dynamics

 In this course, models will mostly be supplied, 
assume you already know how to define them
 These notes now cover the basic models we use 24

KINEMATIC AND DYNAMIC MODELS



 Five basic models to be used throughout course
 Linear dynamic model 

 AUV
 Simple 2D Nonholonomic model 

 Two-wheel robot, speed and rotation rate inputs
 2D Nonholonomic model 

 Two-wheel robot, left and right wheel speed inputs
 Bicycle model

 Two wheel model with speed and steering angle
 Valid for four wheel cars as well

 Quadrotor dynamic model
 Example of 6DOF model with four thrust inputs

MOTION MODELS
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 Linear Example – Simple AUV
 3D Linear motion model for three thruster AUV 

(attitude held constant)
 State Input 

 Continuous dynamics for 
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LINEAR DYNAMIC MODEL
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 Example – Linear AUV
 Should always perform discretization through zero-

order hold, first-order hold, Tustins
 Simple alternative (for exams, proof of concept):

 Approximating left hand side derivatives with finite 
differences, holding right hand side at previous values

 Solving for current state
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LINEAR DYNAMIC MODEL

, , 1
, 1

, , 1
, 1 ,

n t n t
n t

n t n t
n t n t

x x
v

dt
v v

m bv T
dt











  

, , 1 , 1

,
, , 1 , 1

n t n t n t

n t
n t n t n t

x x v dt
Tbv v v dt dt

m m

 

 

 

  



 Example – Linear AUV
 Discrete Dynamics 

 Comes from approximation to matrix exponential

 More accurate approaches (which rely on actually 
calculating matrix exponential) can be used by taking 
advantage of built-in Matlab tools. 28

LINEAR DYNAMIC MODEL
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 Example – Linear AUV
 Discrete Dynamics from zero order hold of continuous 

model (only N,E directions for plotting purposes)

 Comparison to above solution
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LINEAR DYNAMIC MODEL
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 Example – Linear AUV in X,Y plane
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LINEAR DYNAMIC MODEL
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 Two-wheeled robot
 Vehicle State, Inputs:

 Motion Model
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TWO-WHEELED KINEMATIC MODEL
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 Two-wheeled robot with additive Gaussian 
disturbances
 Disturbance model

 Rt diagonal
 Independent disturbances

 Motion Model
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TWO-WHEELED KINEMATIC MODEL
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 Example: Two-wheeled robot with additive 
Gaussian disturbances
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TWO-WHEELED KINEMATIC MODEL
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 Two-wheeled robot with nonlinear disturbances
 Speed, heading  affected

 Motion Model
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KINEMATIC MODEL
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 Example: Two-wheeled robot with nonlinear 
disturbances (accurate steering and velocity 
control)

35

KINEMATIC MODEL
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 Example: Two-wheeled robot with nonlinear 
disturbances (poor steering)
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TWO-WHEELED KINEMATIC MODEL
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 Example: Two-wheeled robot with nonlinear 
disturbances (poor velocity control)
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TWO-WHEELED KINEMATIC MODEL
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TWO-WHEELED KINEMATIC MODEL
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 If the control inputs are wheel speeds, can 
augment the model as follows:
 Center:
 Wheel to center:
 Wheel radius:
 Wheel rotation rates: 
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 Kinematic constraint

TWO-WHEELED KINEMATIC MODEL
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 Velocity is the average of the two wheel velocities
 We can use the instantaneous centre of rotation 

(ICR)

TWO-WHEELED KINEMATIC MODEL
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 Equivalent triangles give the angular rate 
equation

TWO-WHEELED KINEMATIC MODEL
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 So we now have a pair of equality constraints 
that relate the wheel rotation rates to the speed 
and rotation rate of the vehicle.  Return to the 
standard 2 wheel robot, but change the inputs
 Vehicle State:

 Inputs:
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TWO-WHEELED KINEMATIC MODEL
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 Summarizing the kinematic model in body 
coordinates

 Finally, the full dynamics of the vehicle are
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TWO-WHEELED KINEMATIC MODEL
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 Bicycle model
 Front wheel 

steering
 Track motion of 

rear wheel
 Rear x, y 

dynamics same 
as before

 Front wheel
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BICYCLE KINEMATIC MODEL
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 For rotation, we rely on the Instantaneous 
Center of Rotation (ICR) again
1.

2.

3.

4.
45

BICYCLE KINEMATIC MODEL
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 Standard bicycle model

 Good model for cars, Ackermann robots
 Add drivetrain dynamics which affect speed control
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BICYCLE KINEMATIC MODEL
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DYNAMIC MODELS

 For some robots, kinematics are insufficient to 
describe relationship between inputs and vehicle 
state

 Dynamics include forces and moments acting on 
robot in motion model

 Process:
 Draw Free Body Diagram
 Define equations of motion
 Model forces and moments acting on vehicle
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 Example: Quadrotor helicopter
 Free Body Diagram

48

DYNAMIC MODELS
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DYNAMIC MODELS - STANDARD FORMS (EULER)

 Inertial frame

 Common matrix form
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Mixed frame Body frame
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DYNAMIC MODELS

 Equations of motion
 Standard 6 DOF motion model

 Can be used for any rigid body that translates and 
rotates in 3D

 Naturally aligns with inertial (GPS) position and 
body (gyro) angular rate measurement
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DYNAMICS

 Forces acting on vehicle

 Moments acting on vehicle
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 Trajectory Control in Windy Conditions
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RESULTING MOTION

Carlos Wang, University of Waterloo, 2009
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EXTRA SLIDES
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WHEEL CONFIGURATIONS

 Two-wheeled
 Bicycle
 Segway

 Three-wheeled
 Dolley
 Tricycle
 Big Wheel
 Omni-directional

 Four-wheeled
 Rear/Front/4 WD
 Crazy vehicles



 Kinematics governed by wheel number, type, 
geometry
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WHEELED MOTION

Standard
2DOF

Caster
3DOF
Chair

Swedish
3DOF

Robocup

Spherical
3DOF, 

Impractical



 Main Issues:
 Stability
 Maneuverability
 Controllability
 Mechanical Complexity

 Passive stability is guaranteed with 3 wheels, 
improved with 4 wheels
 Active stability required with less (bicycle, Segway)

 Maneuverability/Controllability/Complexity
 Combining steering and drive on one wheel difficult 

to realize but great for control (front wheel drive)  
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WHEEL CHOICE

Image courtesy of Segway
Image courtesy of Segway

Image courtesy of Payam Sabzmeydani



 Suspension required to maintain contact, smooth 
sensor motion

 Bigger wheels effective for overcoming obstacles, 
but require more torque
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UNEVEN TERRAIN

Image courtesy of T. Barfoot Image courtesy of EPFL



 Inspired by nature, less efficient, 
more maneuverable than wheeled 
motion

 Number of legs determines stability
 Number of joints determines 

maneuverability
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LEGGED MOTION

Image courtesy of Lego



 Usually requires predefined gait
 Sequence of motions that achieves forward mobility
 Dynamics quite complex, specialized
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LEGGED MOTION

Free 
Fly

Changeover 
Walking Galloping



 Once gait is defined, motion can be approximated 
by rolling polygon
 Leg angle

 Polygon sides

 Hip height

 Forward speed

 m steps per second, δt elapsed time 60

LEGGED MOTION
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LEGGED MOTION

 Red circle = hip height
 Leg length = step distance = 1
 Steps per second = 0.5



 Fixed Wing – Longitudinal Forces and Moments
 Elevator causes moment about cg
 Tail resists rotation about cg (damping)
 Total lift and weight approximately balance
 Drag increases with elevator deflection
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AERIAL MOTION

Elevator 
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 Rotary wing: Quadrotors have two pairs of 
counter-rotating blades allow for fixed pitch 
rotors and independent actuation of roll, pitch, 
yaw and altitude
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AERIAL MOTION

Yaw Torque

Roll/Pitch Torque Total Thrust for Motion
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 Flapping Wing
 Biologically 

inspired, difficult 
to achieve 
comparable 
efficiency to fixed, 
rotary wing

 Similar approach 
to walking
 Produce cyclic 

model of forces 
and moments
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AERIAL MOTION

Dr. James DeLaurier, 2006
University of Toronto Aerospace Institute
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UWMAV IN ACTION



 Ship motion, close to planar ground robot
 Propulsion and steering at rear
 Sideslip possible
 Augmented model may include roll, pitch

 Submersible motion, analogous to fixed wing 
aircraft
 Buoancy replaces lift to counteract gravity

 Swimming motion
 Complex cyclic behaviour, can be modeled in a 

similar manner to walking, flapping
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AQUATIC MOTION



 World Autonomous Sailing Competition 2008
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AQUATIC ROBOTS IN ACTION



SWEDISH WHEEL ROBOT
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