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 Optimization Theory
 Unconstrained optimization
 Conditions for optimality
 Convexity
 Complexity
 Constrained Optimization
 Dynamic Programming
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OUTLINE



 Given a function that maps a vector of variables 
to the reals

 Find the minimum (or maximum) values of f(x)

 Difficulty of problem depends on properties of f
 Linear vs Nonlinear
 Convex vs Nonconvex
 Continuous vs Non-smooth vs Disjoint
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UNCONSTRAINED OPTIMIZATION
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 Minima:
 Local minimum    : 
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UNCONSTRAINED OPTIMIZATION
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 Minima:
 Global minimum: 
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UNCONSTRAINED OPTIMIZATION

*( ) ( ),  for all nf x f x x 



 For differentiable cost functions, can perform Taylor 
series expansion to find optimality conditions

 Taylor series of f(x) about x
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CONDITIONS FOR OPTIMALITY

21
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Courtesy of Wikipedia



 Necessary conditions (NC)
 If  x* is a local minimum, difference 

between minimum and nearby point  
should be non-negative by definition

 Similarly, for a negative step in x, the 
difference should be non-negative
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CONDITIONS FOR OPTIMALITY
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 Necessary conditions (NC)
 As Δx->0, higher order terms in 

Taylor series disappear 

 First order term must  satisfy above 
for Δx AND –Δx in each element of x

 Necessary condition for optimality
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CONDITIONS FOR OPTIMALITY
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 Sufficient conditions
 Of all points that satisfy necessary 

conditions for optimality, which ones are 
truly local minima?

 For all small excursions from optimal 
solution, cost increases
 Since 

 This means

 And so the sufficient condition for x* to be a local 
minimum is 

9

CONDITIONS FOR OPTIMALITY
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 Note that these conditions are only useful if the 
gradient and Hessian exist 

 Otherwise, resort to initial definition of 
optimality and demonstrate directly
 Integer optimization
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OPTIMALITY CONDITIONS
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 Definition: A set, C, is convex if any two points, 
x1, x2, in C can be connected by a line entirely in 
C.
 That is, for all Ɵ in [0,1], we have
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CONVEXITY

1 2(1 )x x C   

Convex Nonconvex



 Definition: A function, f(x), is convex if for any 
two points, x1, x2, and for all Ɵ in [0,1], we have
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CONVEXITY
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 A convex function has an 
epigraph that is a convex set

 Definition: A Convex 
Optimization problem is one 
where 
 f(x) is a convex function
 g(x) is a convex function
 h(x) is an affine function

 This definition ensure the 
feasible region is a convex set

 Convex optimization problems 
have a unique global minimum! 13

CONVEXITY

Epigraph 
of

f(x)



COMPLEXITY ANALYSIS

 (P) – Deterministic Polynomial time algorithm

 (NP) – Non-deterministic Polynomial time 
algorithm, 
 Feasibility can be determined in polynomial time

 (NP-complete) – NP and at least as hard as 
any known NP problem

 (NP-hard) – not provably NP and at least as 
hard as any NP problem,
 Optimization over an NP-complete feasibility 

problem 14



CONSTRAINED OPTIMIZATION

 Standard form:

 where

 Specific classes of problems, depending on 
definitions of X, f, g, h.

 Very specific optimization engines, for every shade 
of problem 15

min ( )

subject to ( ) 0
( ) 0

x X
f x

g x
h x






can be any type of set
,  ,  :

X
f g h X 



 Linear Program (LP)
 (P) Easy, fast to solve, convex

 Matlab command: 
x = linprog(f, A, b, Aeq, beq, LB, UB, x0)

 “How long do you think it would take to solve a problem 
with 1 million variables?”… “One second!”
 Stephen Boyd, Stanford 16

OPTIMIZATION PROBLEM TYPES
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 Quadratic Program (QP)
 (P) Quadratic cost with linear constraints  O(n3)

 Still fairly easy, fast to solve and convex

 Matlab command: 
x = quadprog(Q, A, b, Aeq, beq, LB, UB, x0)

 Kalman filter, LQR (unconstrained)
 In fact, any convex problem can be solved quickly 

 Matlab toolbox: cvx 17

OPTIMIZATION PROBLEM TYPES

min

s.t.

n

T

x X

eq eq

x Qx

Ax b
A x b

 






Non-Linear Program (NLP)
 (P) Convex problems are easy to solve
 Non-convex problems harder, not guaranteed to 

find global optimum (local minima can occur)

OPTIMIZATION PROBLEM TYPES
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18



Mixed Integer Linear Program (MILP)
 (NP-hard)  computational complexity

 Exponential growth in complexity
 However, many problems can be solved 

surprisingly quickly

MINLP, MILQP etc.

OPTIMIZATION PROBLEM TYPES
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where i rn nX Z 
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 Dynamic Programming
 Richard Bellman (1953): Principle of Optimality

 Applies to multi-period optimization problems
 Discrete problems sum costs at each time step
 Continuous problem costs are an integral over time interval
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DYNAMIC PROGRAMMING

If a solution is optimal for periods t0 to tf, then the solution over 
any subinterval t1 to tf (t0 <= t1 <= tf) must also be optimal

*
0( )x t

*( )fx t
*

1( )x t



 Discrete time case
 In DP, state is state, inputs are actions
 The sequence of all actions is a policy
 Bellman Equation

 Cost is written as a sum of stage costs

 Expressing the principle of optimality

 Jt+1 is the “cost-to-go” 21

DYNAMIC PROGRAMMING
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 Can build optimal solutions by working through 
smaller sub-problems

 Discrete time, discrete space methods
 Bottom-up

 Solve trivial final stage problem first, then solve one step 
backward at a time

 Results in a complete solution to every possible initial state

 Top-down
 Define a recursive program to solve sub-problems from a 

specific starting point
 Sub-problem solutions are recorded and not re-solved
 Results in a complete solution to every possible end state 22

DYNAMIC PROGRAMMING



 Maze: Discrete in time and space
 S = Start, F = Finish
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EXAMPLE

F

S



 Discrete Maze
 JtF = 0, Actions: Left, Up, Right, Down
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EXAMPLE

0

?



 Discrete Maze
 Stage Cost Lt=1, step backward in time, filling in cost 

to go at each cell that can be reached
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EXAMPLE

0

1

2

3

4



 Discrete Maze
 Continuing …, bottom yellow cell has two options
 Jt = min(Lt + Jt+1) = min(1+10,1+10) = 11
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EXAMPLE

0

1

10 2

10 9 3

8 7 6 5 4

9 5

10 6

10 9 8 7



 Discrete Maze
 Continuing
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EXAMPLE

18 14 13 12 13 14 0

18 17 16 15 11 15 1

19 10 2

20 21 11 10 9 3

21 12 8 7 6 5 4

9 5

10 6

11 10 9 8 7



 Discrete Maze
 So the cost from start to finish is 24 

28

EXAMPLE

18 14 13 12 13 14 0

18 17 16 15 11 15 1

19 10 2

20 21 11 10 9 3

21 22 12 8 7 6 5 4

22 23 9 5

23 28 10 6

24 25 26 27 11 10 9 8 7



29

EXTRA SLIDES



fT

x1

x2

 Simplex Method
 Optimum must be at the intersection of constraints
 Intersections are easy to find, change inequalities to 

equalities, add slack variables
 Jump from one vertex to the next (in a smart way), 

until no more improvement is possible

SOLUTION METHODS FOR LINEAR PROGRAMS
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SOLUTION METHOD FOR LINEAR PROGRAMS

 Interior Point Methods
 Apply Barrier Function to each constraint and sum
 Primal-Dual Formulation
 Newton Step
 At each iteration, 

increase slope of barriers
 Benefits

 Scales better than Simplex
 Certificate of Optimality

 Stop whenever
 Know how close to optimal

the current solution is
 Relies on duality

-fT

x1

x2

31



 Sequential Quadratic Programming
 Also an interior point method
 At each iteration, calculate gradient and Hessian of 

Lagrangian
 If problem is a quadratic program, apply Newton step 

to optimal solution
 If not, use Newton step direction as a descent 

direction and apply a line search
 Finding Newton step involves inverse of Hessian
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SOLUTION METHODS FOR NLPS



SOLUTION METHODS FOR MILPS

Branch and Bound Algorithm
1.Solve LP relaxation for lower bound on cost for 

current branch
 If solution exceeds upper bound, branch is 

terminated
 If solution is integer, replace upper bound on cost

2.Create two branched problems by adding 
constraints to original problem
Select integer variable with fractional LP solution
Add integer constraints to the original LP 

3.Repeat until no branches remain, return optimal 
solution.

33More details later!



 Constrained minima
 No active constraints = unconstrained
 Active constraints

 Gradient of cost must be perpendicular to active constraint
 Otherwise moving along constraint would reduce cost and 

remain feasible
 Can be expressed as

 with Lagrange multiplier λ
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CONSTRAINED OPTIMIZATION
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 Lagrange Multipliers
 By introducing Lagrange multipliers, can convert 

constrained problem to an unconstrained problem

 Can directly apply unconstrained optimization 
technique to Lagrangian

 Results in expanded necessary and sufficient 
conditions for optimality 

 In practice, best optimization algorithms treat 
constraints differently 35

CONSTRAINED OPTIMIZATION
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 Equality Constraints
 Must be active

 Inequality Constraints (Karush, Kuhn, Tucker)
 If active, Lagrange multipliers are non-negative
 If inactive, Lagrange multipliers are zero

 A(x*) is the set of active constraints 36

CONSTRAINED OPTIMIZATION
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