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 Bayes Filter Framework
 Kalman Filter
 Extended Kalman Filter
 Particle Filter
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OUTLINE



 The Bayes Filter forms the foundation for all 
other filters in this class
 As described in background slides, Bayes rule is the 

right way to incorporate new probabilistic 
information into an existing, prior estimate 

 The resulting filter definition can be implemented 
directly for discrete state systems

 For continuous states, need additional assumptions, 
additional structure to solve the update equations 
analytically
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 State xt
 All aspects of the vehicle and its environment that can impact the 

future
 Assume the state is complete

 Control inputs ut
 All elements of the vehicle and its environment that can be controlled

 Measurements yt
 All elements of the vehicle and its environment that can be sensed

 Note: sticking with Thrun, Burgard, Fox notation
 Discrete time index  t
 Initial state is x0
 First, apply control action u1
 Move to state x1
 Then, take measurement y1
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 Motion Modeling
 Complete state:

 At each time t, xt-1 is a sufficient summary of all previous 
inputs and measurements

 Application of Conditional Independence
 No additional information is to be had by considering 

previous inputs or measurements

 Referred to as the Markov Assumption
 Motion model is a Markov Chain
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 Measurement Modeling
 Complete state: 

 Current state is sufficient to model all previous states, 
measurements and inputs

 Again, conditional independence

 Recall, in standard LTI state space model, measurement 
model may also depend on the current input
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 Combined Model
 Referred to as Hidden Markov Model (HMM) or 

Dynamic Bayes Network (DBN)
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 Example Discrete State Motion Model: 
 States: {No Rain, Drizzle, Steady, Downpour}
 Inputs: None
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 For discrete states, the motion model can be 
written in matrix form
 For each input ut, the nXn motion model matrix is

 Each row defines the probabilities of transitioning to state 
xt from all possible states xt-1

 Each column defines the probabilities of transitioning to 
any state xt from a specific state xt-1

 Again, the columns must sum to 1 10
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 Example:
 Motion Model in Matrix Form 

 No inputs, one matrix
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 Example Measurement Model:
 States: {No Rain, Drizzle, Steady, Downpour}
 Measurements: {Dry, Light, Medium, Heavy}

 Again, the columns sum to 1
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 Example System Evolution
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 Aim of Bayes Filter
 To estimate the current state of the system based on 

all known inputs and measurements.

 That is, to define a belief about the current state 
using all available information:

 Known as belief, state of knowledge, information state
 Depends on every bit of information that exists up to time t

 Can also define a belief prior to measurement yt

 Known as prediction, predicted state 14
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 Problem Statement
 Given a prior for the system state

 Given motion and measurement models

 Given a sequence of inputs and measurements

 Estimate the current state distribution (form a belief 
about the current state) 15
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 Bayes Filter Algorithm 
 At each time step, t, for all possible values of the 

state x
1. Prediction update (Total probability)

2. Measurement update (Bayes Theorem)

 η is a normalizing constant that does not depend on the 
state (will become apparent in derivation)

 Recursive estimation technique 16
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 Recall Bayes Theorem

 Terminology
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 Derivation
 Proof by induction

 Demonstrate that belief at time t can be found using belief 
at time t-1, input at t and measurement at t

 Initially

 At time t, Bayes Theorem relates xt, yt
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 Derivation
1. Measurement model simplifies first numerator term

2. Second numerator term is definition of belief 
prediction

3. Denominator is independent of state, and so is 
constant for each time step. Define the normalizer,  
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 Derivation
 Summarizing the three substitutions

 This is exactly the measurement update step
 Requires the measurement yt to be known  

 However, we now need to find the belief prediction
 Done using total probability, over previous state
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 Derivation
1. This time, the motion model can be incorporated

2. And we note that the control input at time t does 
not affect the state at time t-1
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 Derivation
 And so the prediction update is defined

 Which completes the proof by induction
 For this step, we need the control input to define the correct 

motion model distribution

 If state, measurements, inputs are discrete, can 
directly implement Bayes Filter
 Prediction update is summation over discrete states
 Measurement update is multiplication of two vectors
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 If state, measurement, inputs are continuous, 
must define model or approximation to enable 
computation
 Kalman Filter: 

 Linear motion models
 Linear measurement models
 Additive Gaussian disturbance and noise distributions

 Extended Kalman Filter/Unscented Kalman Filter: 
 Nonlinear motion models
 Nonlinear measurement models
 Additive Gaussian disturbance and noise distributions

 Particle Filter:
 (Dis)continuous motion models
 (Dis)continuous measurement models
 General disturbance and noise distributions
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 Discrete Bayes Filter Example
 Problem: Detect if a door is open/closed with a robot 

that can sense the door position and pull the door 
open

 State: door={open, closed}
 State Prior (uniform):
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 Example
 Inputs: arm_command={none, pull}
 Motion Model

 If input = none, do nothing:

 If input = pull, pull the door open
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 Example
 Measurements: meas={sense_open, sense_closed}
 Measurement model (noisy door sensor):
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 Example
 At time step 1, input = none
 Perform state prediction update

 Calculate belief prediction for each possible value of 
state
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 Example
 At time step 1,measurement y1 = sense_open
 Measurement update

 Calculate for each possible value of state

 Calculate normalizer and solve for posterior
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 Example
 At time step 2, a pull and a sense_open
 Then state propagation

 And measurement update

 In summary: 
 Uniform prior, do nothing, measure open: bel(open1) = 0.75
 Pull open, measure open: bel(open2) = 0.983 29
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 Example 2: Histogram Filter
 Motion of  robot in a nXn grid

 State: 
 Position = {x11, x12, …, x1n, , …,  xnn}

 Input: 
 Move = {Up, Right, Down, Left}
 40% chance the move does not happen
 Cannot pass through outer walls

 Measurement: Accurate to within 3X3 grid
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 Example 2:
 Prior over states

 Assume no information, uniform
 Vector of length n2

 Motion model
 Given a particular input and 

previous state, probability of moving 
to any other state
 nXn state, one for each grid point
 4 input choices
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 Example 2
 Measurement Model

 Given any current state, probability of 
a measurement

 Same number of measurements as 
states

 Same 3X3 matrix governs all interior 
points

 Boundaries cut off invalid 
measurements and require 
normalization

 Very simplistic and bloated model
 Could replace with 2 separate 

states and measurements to 
perpendicular walls
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 Example 2 – Motion Model code
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mot_mod = zeros(N,N,4); 
for i=1:n

for j=1:n
cur = i+(j-1)*n;
% Move up
if (j > 1)

mot_mod(cur-n,cur,1) = 0.6; 
mot_mod(cur,cur,1) = 0.4; 

else
mot_mod(cur,cur,1) = 1; 

end
% Move right
if (i < n)

mot_mod(cur+1,cur,2) = 0.6; 
mot_mod(cur,cur,2) = 0.4; 

else
mot_mod(cur,cur,2) = 1; 

end
… 



 Example 2 – Measurement Model 
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%% Create the measurement model
meas_mod_rel = [0.11 0.11 0.11;  

0.11 0.12 0.11;
0.11 0.11 0.11];

% Convert to full measurement model
% p(y_t | x_t)
meas_mod = zeros(N,N);
% Fill in non-boundary measurements
for i=2:n-1

for j=2:n-1
cur = i+(j-1)*n;
meas_mod(cur-n+[-1:1:1],cur) = meas_mod_rel(1,:); 
meas_mod(cur+[-1:1:1],cur) = meas_mod_rel(2,:); 
meas_mod(cur+n+[-1:1:1],cur) = meas_mod_rel(3,:); 

end
end
…



 Example 2 – Makin’ movies!
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videoobj=VideoWriter('bayesgrid.mp4','MPEG-4');
truefps = 1;
videoobj.FrameRate = 10; %Anything less than 10 fps fails.
open(videoobj);

figure(1);clf; hold on;
beliefs = reshape(bel,n,n);
imagesc(beliefs);
plot(pos(2),pos(1),'ro','MarkerSize',6,'LineWidth',2)
colormap(bone);
title('True state and beliefs')
F = getframe;
% Dumb hack to get desired framerate
for dumb=1:floor(10/truefps)

writeVideo(videoobj, F);
end
…



 Example 2 – Simulation code

36

BAYES FILTER . . .11x 1nx

%Main Loop
for t=1:T

%% Simulation
% Select motion input
u(t) = ceil(4*rand(1));
% Select a motion
thresh = rand(1);
new_x = find(cumsum(squeeze(mot_mod(:,:,u(t)))*x(:,t))>thresh,1);
% Move vehicle
x(new_x,t+1) = 1;
% Take measurement
thresh = rand(1);
new_y = find(cumsum(meas_mod(:,:)*x(:,t+1))>thresh,1);
y(new_y,t) = 1;
% Store for plotting
…



 Example 2 – Bayes Filter
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…
%% Bayesian Estimation
% Prediction update
belp = squeeze(mot_mod(:,:,u(t)))*bel;

% Measurement update
bel = meas_mod(new_y,:)'.*belp;
bel = bel/norm(bel);

[pmax y_bel(t)] = max(bel); 

%% Plot beliefs
…



 Example 2:
 Results
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 Bayes Filter Framework
 Kalman Filter
 Extended Kalman Filter
 Particle Filter
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 Rudolf Kalman 1960 (BS, MS: MIT, PhD: 
Columbia)

 Discrete version (Kalman filter)
 Continuous version (Kalman-Bucy filter)
 Many other versions, improvements, 

modifications 40
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The filter is named after Rudolf E. Kalman, though Thorvald Nicolai
Thiele[1] and Peter Swerling developed a similar algorithm earlier.
Stanley F. Schmidt is generally credited with developing the first
implementation of a Kalman filter. It was during a visit of Kalman to
the NASA Ames Research Center that he saw the applicability of his
ideas to the problem of trajectory estimation for the Apollo program,
leading to its incorporation in the Apollo navigation computer. The filter
was developed in papers by Swerling (1958), Kalman (1960), and
Kalman and Bucy (1961).

Wikipedia



 Kalman Filter Modeling Assumption
 Continuous state, inputs, measurements
 Prior over the state is Gaussian

 Motion model, linear with additive Gaussian 
disturbances

 Often, robotics systems are more easily described in 
continuous domain
 Convert to discrete time using matrix exponential
 Matlab contains tools to perform this conversion (c2d, d2c) 41
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 Kalman Filter Modeling Assumption
 Measurement model also linear with additive 

Gaussian noise

 Can add in input dependence to match up with 
controls literature
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 Full Model
 State prior

 Motion model

 Measurement model
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 Assume belief is Gaussian at time t

 μt is the best estimate of the current state at time t
 ∑t is the covariance, indicating the certainty in the 

current estimate

 Will be able to demonstrate the predicted belief 
at the next time step is Gaussian

 And that the belief at next time step is also 
Gaussian
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 Goal: 
 To find belief over state as accurately as possible 

given all available information
 Minimize the mean square error of the estimate (MMSE 

estimator)

 Same as least square problem

 Using an unbiased estimator

 On average, your estimate is correct!
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 Goal
 The MMSE estimate can be written as

 And is equivalent to minimizing the trace of the error 
covariance matrix

 Proof:
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 Kalman Filter Algorithm 
 At each time step, t, update both sets of beliefs

1. Prediction update

2. Measurement update

 Kalman Gain, Kt
 Blending factor between prediction and measurement
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 Example
 Temperature control

 State is current temperature difference with outside
 One dimensional example
 Prior: fairly certain of current temperature difference

 Motion Model: Decaying temperature + furnace input + 
disturbances (opening doors, outside effects)
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 Example
 Measurement Model

 Directly measure the current temperature difference

 Controller design
 Bang bang control, based on current estimate of 

temperature difference
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 Example
 Simulation
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for t=1:length(T)
% Select control action

if (t>1) u(t)=u(t-1); end
if (mu > 10)

u(t) = 0;
elseif (mu < 2);

u(t) = 1;
end

% Update state
e = sqrt(R)*randn(1);
x(t+1) = A*x(t)+ B*u(t) + e;

% Determine measurement
d = sqrt(Q)*randn(1);
y(t) = C*x(t+1) + d;    



 Example
 Estimation

 Matrix inverse 0(n2.4), matrix multiplication O(n2)
 When implementing in Matlab, inv( ) performs 

matrix inverse for you 
 For embeddded code, many libraries exist

 Try Gnu Scientific Library, easy starting point
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% Prediction update
mup = A*mu + B*u(t);
Sp = A*S*A' + R;

% Measurement update
K = Sp*C'*inv(C*Sp*C'+Q);
mu = mup + K*(y(t)-C*mup);
S = (1-K*C)*Sp;



 Example
 Beliefs during the first time step

 Prior
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 Example
 Beliefs during the first time step

 Prediction Update: increased variance, shifted mean
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 Example
 Beliefs after the first time step

 Measurement update: decreased variance
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 Example
 Trajectories over time
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 Example
 Measurements over time
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 Example
 Estimates over time
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 Recall Goal: 
 To find belief over state as accurately as possible 

given all available information
 Minimize the mean square error of the estimate (MMSE 

estimator)

 Same as least square problem

 Using an unbiased estimator

 On average, your estimate is right!
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 Derivation

 Define the innovation
 The difference between the measurement and the expected 

measurement given the predicted state and the 
measurement model

 Assume the form of the estimator is a linear 
combination of the predicted belief and the 
innovation
 The following form turns out to be unbiased
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 Steps

 Prediction update
 Find update rule for mean, covariance of predicted belief, 

given input and motion model

 Measurement update
 Solve MMSE optimization problem to find update rule for 

mean, covariance of belief  given measurement model and 
measurement
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 Prediction Update
 Only new information is input ut

 Prediction update is a linear transformation of belief 
at previous time step
 Motion model is

 Motion noise, previous belief are Gaussian so this is an 
addition of Gaussian distributions

 Therefore the predicted mean and covariance are
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 Measurement update
 First, lets define the form of the error covariance, 

substituting in the form of the mean update and the 
measurement model

 But, by the assumption of the form of the estimator, 
and the measurement model
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 Measurement update
 Next, reorganize terms of the covariance

 But the middle term is zero in expectation
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 Measurement Update
 Recall multiplication by a constant yields

 In the above, numerous constants
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 Measurement Update
 The resulting covariance is

 The expectations that remain are known quantities

 Which leaves us with a quadratic equation in Kt
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 Measurement update
 We now have the covariance in a form that can be 

optimized

 We need two identities to find this minimum
 Differentiation of linear matrix expression

 Differentiation of quadratic matrix expression
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 Measurement update
 The optimization is done by setting the derivative of 

the trace w.r.t the Kalman gain to 0

 Taking the matrix derivative w.r.t Kt
 Two linear terms and one quadratic
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 Measurement update
 Set the derivative to 0, noting that covariance is 

symmetric, and AXAT preserves symmetry

 Simplifying

 And finally, we arrive at the Kalman gain equation
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 Measurement Update
 So far, we have found the optimal gain Kt which 

minimizes mean square error in the measurement 
update for the mean

 Next, we need to simplify the covariance update 
using  this result for the Kalman gain
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 Measurement Update
 Recall the Covariance update was

 Substituting in the Kalman gain gives
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 Measurement Update
 Fortunately, almost everything cancels and we are 

left with
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 Kalman Filter Algorithm 
 At each time step, t, update both sets of beliefs

1. Prediction update

2. Measurement update

 Kalman Gain, Kt
 Blending factor between prediction and measurement
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 Summary
 Follows same framework as Bayes filter
 Requires linear motion and Gaussian disturbance
 Requires linear measurement and Gaussian noise
 It is sufficient to update mean and covariance of 

beliefs, because they remain Gaussian
 Prediction step involves addition of Gaussians
 Measurement step seeks to minimize mean square 

error of the estimate
 Expand out covariance from definition and measurement 

model
 Assume form of estimator, linear combination of prediction 

and measurement
 Solve MMSE problem to find optimal linear combination
 Simplify covariance update once gain is found
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 Relation to Bayes Filter Problem Formulation
 State prior

 Motion model

 Measurement model

 Beliefs
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 Relation to Bayes Filter Algorithm 
1. Prediction update (Total probability)

 Insert normal distributions

 Separate out terms that depend on current state
 Manipulate remaining integral into a Gaussian pdf

form of previous state
 Integrate over full range to get 1
 Manipulate remaining terms and solve for Kalman

prediction equations.

 Refer to Thrun, Burgard & Fox Chap. 3 for details 75
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 Relation to Bayes Filter Algorithm 
2. Measurement update (Bayes Theorem)

 Reorganize exponents and note it remains a Gaussian
 For any Gaussian:

 Second derivative of exponent is inverse of covariance
 Mean minimizes exponent,

• Set first derivative of exponent to 0 and solve
 Use this to solve for mean and covariance of belief

 where Kt is the Kalman gain as before 76

KALMAN FILTER

111/2( ) ( ) 1/2( ) ( )

( ) ( | ) ( )
T T

tt t t t t t t t t t t

t t t t

y C x Q y C x x x

bel x p y x bel x

e e  




      





( ( ),( ) )tt t t t t t tN K y C I K C     



 Example
 3D Linear motion model for three thruster AUV 

(heading constant)
 State Input 

 Continuous dynamics for 
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 Example – Omni-directional AUV
 Discrete Dynamics from zero order hold, dt = 0.1s

 Disturbances
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 Example – Omni-directional AUV
 Measurement Model

 Can only measure position (relative to known objects)

 With correlated measurement noise
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 Example 
 Control inputs 

 This time different frequencies of sinusoidal input

 Simulation run for 10 seconds, or 101 time steps

 Prior distribution
 Fairly course initialization
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 Example
 Ideal results: very low noise and disturbance levels
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 Example
 Results with larger noise and disturbances
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 Example
 Effect of decreased motion disturbances
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 Example
 Effect of decreased measurement noise
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 Belief mean is tradeoff between prediction and 
measurement

 Kalman gain determines how to blend estimates

 If Qt is large, inverse is small, so Kalman gain 
remains small
 When measurements are high in covariance, don’t 

trust them!

 If Rt is large, then so is predicted belief 
covariance, so Kalman gain becomes large
 When model is affected by large unknown 

disturbances, don’t trust the predicted motion!
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 Example
 Evolution of Kalman Gain
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 Steady state Kalman Filter
 For constant noise/disturbance models, it is possible 

to use steady state values for the Kalman gain

 Set ∑ = ∑t = ∑t-1 in the Kalman filter update equations and 
solve for ∑

 Referred to as the Discrete Algebraic Ricatti Equation 
(DARE), Matlab will solve it for you

 Can also run Kalman filter until convergence and 
then eliminate gain update step (matrix inversion)
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 Example
 Incorrect measurement distribution (covariance 

actually much larger)

 Estimate tracks measurements too closely
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 Multi-Rate Kalman Filter
 At each time step, it is possible to use different 

measurement models 
 Time varying Ct and Qt

 Identify a base update rate
 Find greatest common divisor of sample rates

 e.g. GPS 5Hz, Sodar 12 Hz, Base rate 60 Hz
 Create discretized motion model at base rate
 At each timestep

1. Perform prediction update
2. If new measurements exist, perform measurement update 

for those measurements only
 Select appropriate Ct and Qt
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 Example
 Multi-rate Kalman Filter

 Add in velocity measurements at 100 Hz
 Base update rate 0.01 s 
 Create two separate types of measurement updates

 Velocity only measurement for 9 time steps

 Full state measurement on the 10th time step
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 Example
 Multi-rate estimation
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 Alternate formulation: Information Filter
 Provides possibility for computational savings when 

taking many redundant measurements
 Based on information theory concepts (Fisher 

Information)

 Define the Information Matrix as the inverse of the 
covariance

 Define the Information vector as
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 Information Filter
 Substitution into the Kalman filter equation yields

1. Prediction update

2. Measurement update
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 Information Filter
 The matrix inversion is now embedded in the 

prediction update
 Belief and predicted belief inverse depend on the number of 

states
 For Kalman filter, gain inverse depends on the number of 

measurements
 This can be a significant savings in some cases

 To compute state estimate 

 Covariance already calculated 
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 Bayes Filter Framework
 Kalman Filter
 Extended Kalman Filter
 Particle Filter
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 Kalman Filter requires linear motion and 
measurement models
 Results in compact, recursive estimation technique
 Not very realistic for most applications

 Nonlinear models eliminate the guarantee that 
the belief distributions remain Gaussian
 No longer able to simply track mean and covariance
 No closed form solution to Bayes filter algorithm can 

be found for general nonlinear model
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 Effect of nonlinearity on Gaussian distribution
 Linear transformation
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 Arbitrary distribution generation
 Take 5,000,000 samples of original Gaussian

 Apply nonlinear transformation to each sample

 Create histogram with 100 bins and normalize counts

 Best Gaussian fit generation
 Calculate mean and covariance of 5,000,000 

transformed samples
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 Effect of nonlinearity on Gaussian distribution
 Nonlinear transformation
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 Effect of nonlinearity on Gaussian distribution
 Nonlinear transformation
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 Effect of nonlinearity on Gaussian distribution
 Nonlinear transformation
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 Extended Kalman Filter
 A direct generalization of the Kalman filter to 

nonlinear motion and measurement models

 Relies on linearization about current estimate 

 Works well when the problem maintains locally linear and 
Gaussian characteristics

 Computationally similar to Kalman Filter

 Covariance can diverge when approximation is poor!
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 Extended Kalman Filter Modeling Assumption
 Prior over the state is Gaussian

 Motion model, nonlinear but still with additive 
Gaussian disturbances

 Measurement model also nonlinear with additive 
Gaussian noise

 Nonlinearity destroys certainty that beliefs remain 
Gaussian 103
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 Recall Kalman Filter Algorithm 
1. Prediction update

2. Measurement update

 Bt only enters predicted mean calculation
 At,Ct also affect covariance
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 How to update beliefs while maintaining Gaussian form 
of distribution?

 Key idea of EKF

 The mean can be propagated through the nonlinear model

 The covariance can be updated with a locally linear 
approximation to the model
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 First Order Taylor Series Expansion

 Motion model
 Linearize about most likely state (the previous mean)
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 First Order Taylor Series Expansion

 Measurement Model
 Linearize about most likely state (the predicted mean)

 Both models are now linear
 Only valid near point of linearization
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 Prediction Update
 Only new information is input ut

 Prediction update is a linear transformation of belief 
at previous time step
 Motion model is

 Motion disturbance, previous belief are Gaussian so this is 
remains addition of Gaussian distributions

 Therefore the predicted mean and covariance are
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 Measurement Update
 Follows same arguments as Kalman Filter derivation

 MMSE estimator
 Assume form of measurement update (linear, Kalman Gain)
 Substitute in approximate measurement and motion models
 Mean update relies on nonlinear model
 Gain, covariance update rely on linearization 
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 Extended Kalman Filter Algorithm
1. Prediction Update

2. Measurement Update
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 Example
 Radar measurement of an airplane position while 

flying at constant altitude and velocity
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 Example
 State Initial

 Motion Model
 Linear, no input (very simple)
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 Example
 Measurement Model

 Using state variables

 Linearization of measurement model
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 Sample Code
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%% Extended Kalman Filter Estimation
% Prediction update
mup = Ad*mu;
Sp = Ad*S*Ad' + R;

% Measurement update
Ht = [(mup(1))/(sqrt(mup(1)^2 + mup(3)^2)); 

0;
(mup(3))/(sqrt(mup(1)^2 + mup(3)^2))]’;

K = Sp*Ht'*inv(Ht*Sp*Ht'+Q);
mu = mup + K*(y(:,t)-sqrt(mup(1)^2 + mup(3)^2));
S = (eye(n)-K*Ht)*Sp;



 Results
 Low noise, fairly accurate prior
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 Results
 Low noise, incorrect prior
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 Results
 Noisy noise, big disturbances,  incorrect prior
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 Results
 Symmetrically incorrect prior

118

EXTENDED KALMAN FILTER

0 [ 20 2 3]T  

o    State 
x    Estimate

Dish @
Origin



 Summary
 Direct extension of KF to nonlinear models
 Use Taylor series expansion to find locally linear 

approximations
 No longer optimal
 Most effective when covariance is low 

 Local linear approximation more likely to be accurate over 
range of distribution

 Covariance update may diverge
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 Reminder on generating multivariate random 
noise samples
 Define two distributions, the one of interest and the 

standard normal distribution

 If the covariance is full rank, it can be diagonalized
 Symmetry implies positive semidefiniteness

 Can now relate the two distributions (linear identity)
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 To implement this in Matlab for simulation 
purposes
 Define μ,∑

 Find eigenvalues , λ, and eigenvectors, E of ∑

 The noise can then be created with
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 Note on confidence ellipses
 Lines of constant probability 

 Found by setting pdf exponent to a constant 
 Principal axes are eigenvectors of covariance
 Magnitudes depend on eigenvalues of 

covariance
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,     =
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50%, 99% error ellipses
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 The EKF used linearization about the 
predicted/previous state estimate to update the 
mean and covariance of the current estimate
 Approximation of a nonlinear transformation of a 

Gaussian distribution by linear transformation of the 
mean and covariance

 There are other ways to approximate this 
transformation
 Unscented transform leads to better estimates of 

resulting mean and covariance in some cases
 Relies on a set of samples known as sigma points or 

particles, that get transformed directly
 UKF first published in 1997, still being discussed, 

extended, solidified. 124
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 Key idea: Unscented transform
 It is more accurate to approximate a distribution 

using samples than it is to approximate an arbitrary 
nonlinear function through linearization.

 Let’s first go back to the nonlinear function of a 
Gaussian and see what the EKF is doing.
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 Effect of nonlinearity on Gaussian distribution
 Nonlinear transformation
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 Nonlinear distribution generation
 Take 5,000,000 samples of original Gaussian

 Apply nonlinear transformation to each sample

 Create histogram with 100 bins and normalize counts

 Best Gaussian fit generation
 Calculate mean and covariance of 5,000,000 

transformed samples
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 Extended Kalman Filter approximation 
generation
 Linearize nonlinear function about mean

 Propagate mean through nonlinear function and 
covariance through linearized function
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 Linearization  over-
predicts mean shift
 Assumes symmetry of 

atan

 Covariance over-
predicted as well
 atan has effect of piling 

up tails at +/- 1.57
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 The unscented transform can also be used
 Linearization is a first order approximation
 The unscented transform is second order accurate, 

and can be tuned to reduce fourth order errors

 The transform relies on a set of specially chosen 
samples known as sigma points
 2n+1 points chosen to capture the transformation of 

the distribution
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 In  1D case, the unscented transform select 3 
points

 And we select weights so that we can recover the 
original mean and variance
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 We then pass the sigma points through the 
nonlinear function

 And construct the new mean and variance using 
the same weights
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 In general, the sigma points are chosen as follows

 Generalized Std. Dev. is square root of covariance
 Here the square root of the covariance matrix is 

ambiguous, but must satisfy 
 Can use sqrtm, which returns the unique solution with non-

negative eigenvalues, 
 Or use chol, the cholesky decomposition, which returns an 

upper triangular square root and is very efficient 
 Assumes symmetry 
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 The parameter λ defines the weights to use for 
generating the mean and covariance, can be 
tuned

 α governs the spread of the sigma points about the 
mean 
 the larger the α the larger the spread of sigma points
 Usually, 

 κ ensures positive semi-definiteness if  
 Can be left at 0 safely (ignored)
 Also affects the spread of sigma points
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 The sigma points are then propagated through 
the nonlinear function

 And a mean and covariance is extracted using 
special weights for the sigma points
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 The weights are defined as

 With another tunable parameter β, 
 Can be ignored
 Or set to 2 

 reduces errors in some of the fourth order terms for a 
Gaussian prior 
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 Select 
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0.01, 0, 0    



 Select
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 Incorporating this method of distribution 
transformation into the Bayesian framework is 
possible

 There are two nonlinear functions to deal with
 Two unscented transforms are needed per timestep

 The measurement model depends on the state we are 
trying to estimate
 The state is augmented by the measurement noise states 

and a joint probability density function is updated
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 Example repeat
 Radar measurement of an airplane position while 

flying at constant altitude and velocity
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 Example
 State Initial

 Motion Model

 Measurement Model 
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 Simulation results- low disturbances, noise
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 Error plot for position error
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 Simulation results, higher disturbances
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 Error plot for position error
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 Unscented Kalman Filter Modeling Assumptions
 Prior over the state is Gaussian

 Motion model, nonlinear but still with additive 
Gaussian disturbances

 Measurement model also nonlinear with additive 
Gaussian noise

 Nonlinearity destroys certainty that beliefs remain 
Gaussian 150
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 Prediction step
 Propagation of belief at t-1 through motion model

 Pick sigma points

 Propagate through motion model
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 Prediction step
 Unscented prediction step

 Calculate mean and covariance, adding motion covariance 
to result
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 Measurement step
 Recall from Bayes filter, we are trying to define

 We have the mean and covariance of predicted belief

 We need to propagate this belief through another 
unscented transform
 To do this, we need to look at the joint unscented transform
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 Joint transform 
 with additive noise in model

 Mean and covariance is found as before
 Generate sigma points
 Propagate through model
 Find mean as before and covariance, cross-covariance as
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 Magic trick (Schur’s complement)
 If

 Then

 Can in fact derive KF updates using this as well
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 Measurement Step
 Form the joint distribution of           given all inputs 

and all but the latest measurement

 Solve for all components and apply Schur’s
complement

 But some of these we know already
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 Measurement step
 The rest we can approximate with the unscented 

transform
 Generate new sigma points from the predicted belief

 Propagate through measurement model
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 Measurement step
 Then the measurement terms and cross terms can be 

approximated as
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 Measurement Step
 Finally, applying Schur’s complement

 To the above joint distribution

 And therefore,
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 Summary
 Prediction Step
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Select sigma 
points

Apply motion model

Extract 
mean and 
covariance



 Summary
 Measurement step
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Select sigma 
points

Apply measurement 
model

Extract 
mean and 
covariance



 Summary
 Measurement Step
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Extract cross-
covariance

Update belief 
using Schur’s
complement



 Summary
 Similar computation time to EKF 

 longer due to square root and inverse

 Potentially capable of reducing errors in propagation 
of beliefs through nonlinear functions

 Tuning effects unclear, can lead to strange results

 Benefit minimal when nonlinearities are modest, or 
uncertainty is low
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