
ME 597: AUTONOMOUS MOBILE ROBOTICS
SECTION 8 – PLANNING I

Prof. Steven Waslander

2

COMPONENTS

Actuators Vehicle Sensors

Control Estimation

Hardware

Vehicle Autonomy

Environmental Autonomy

Path
Planning Mapping

Mission Autonomy

Mission
Planning

Mission
Mapping

 Planning Concepts

 Reactive Motion Planning Algorithms
 Bug
 Potential Fields
 Trajectory Rollout

 Graph Based Motion Planning
 Finding paths on graphs

 Depth First, Breadth First, Wavefront
 Dijkstra, A*

 Generating Graphs from environments
 Visibility Graphs
 Decompositions 3

OUTLINE

 Probabilistic Graph Based Planning
 Complex Planning Examples
 Probabilistic Roadmaps
 PRM Algorithm
 Collision Detection
 Sampling Strategies
 RRT Algorithm

 Optimization Based Planning
 Linear Programming
 Nonlinear Programming

4

OUTLINE

 Motion Planning Terminology
 Work space

 The environment the vehicle finds itself in
 Comes from industrial robotics
 2-3D physical world
 Can be defined in a number of ways

 Polygons, Surfaces, Occupancy grids

5

PLANNING

 Motion Planning Terminology
 Configuration Space

 Complete planning space of robot
 For two linkage robot, workspace is 2D space of joint angles,

minus black areas which are positions blocked by obstacles
 Configuration space is much different, defined by allowable

states in white, unallowable in grey

6

PLANNING

Work space Configuration space

 Motion Planning Terminology
 Configuration space for a two wheeled non-point robot

 Can be insufficient to simply expand the obstacle
 Can find x,y path but must also identify heading to travel in
 Constraints on velocity not represented here 7

PLANNING

 Objectives
 Predefined target configuration

 Guaranteed to find a path
 Minimum distance
 Minimum time
 Minimum cost (drivability, risk)

 Coverage/Search
 Explore/monitor an area by visiting all locations

 At least once
 Exactly once
 Minimizing time between visits etc.

8

PLANNING

 Constraints
 Occupancy

 Obstacles defined by geometric representation
 State of vehicle cannot violate obstacle regions
 Included in definition of work space, configuration space

 Dynamics
 Holonomic vs Nonholonomic

 When motion constraints involve vehicle velocities, the
system is considered nonholonomic
 Much harder planning problem
 Two wheeled robot a classic example

9

PLANNING

 Approaches
 Reactive – local approach

 Decide a direction to go in based on goal and obstacles
 Ignores vehicle dynamics
 Usually deterministic formulation

 Graph-based – global approach
 Graph extracted from workspace definition
 Graph generated by random sampling of nodes and random

connections between nodes

 Optimal – global approach
 Find complete path to goal
 Incorporate constraints

 May need to model a certain way
 Graph representation of environment
 Linear, nonlinear, mixed integer-linear
 Probabilistic representation of configuration space (soft

constraints) 10

PLANNING

 Reactive - Bug Algorithms
 Simplest form of path planning from implementation

point of view
 Assume very little knowledge of environment or robot state

 Define a set of rules, prove reachability of goal

 Bug 0, 1, 2, Tangent Bug ….
 Demonstrate how hard it is to find way around 2D

environment even if optimality is of no concern
 Require as little storage and sensing as possible

11

BUG ALGORITHMS

 Bug 0: Known goal and robot locations, can follow
obstacle boundary
 Always head directly to goal
 If blocked, turn and follow obstacle until you can

head directly to goal again
 Doesn’t always work

12

BUG ALGORITHMS

 Bug 1: Known location or robot and goal, can
follow obstacle boundary
 Head directly toward goal
 When blocked, circumvent obstacle, remember closest

point
 Return to closest point and continue to goal
 Guaranteed arrival
 Can be slow

13

BUG ALGORITHMS

 Bug 2: Known location and goal, can follow
obstacle boundary
 Head toward goal, track start-goal line (m-line)
 When blocked, circumvent obstacle until m-line

 Try both directions if necessary
 Continue to goal

14

BUG ALGORITHMS

 Bugs Comparison

15

BUG ALGORITHMS

Bug 2 beats Bug 1 Bug 1 beats Bug 2

No clear winner, we need something more sophisticated

 Potential Fields [Khatib, 1986]
 A simple type of navigation function

 A function that describes a direction of travel everywhere in
the environment

 Defines a potential field at every point in map
 Robot descends potential field by moving in direction

of negative gradient

16

POTENTIAL FIELDS

 Potential Field Target function
 Target attracts the vehicle

 Distance (ρ) between vehicle, q, and target, qg

 Usually quadratic, can be anything

17

POTENTIAL FIELDS

2() (,)g
att attV q K q q

 Potential Fields
 Obstacles repel the vehicle

 Strength based on shortest distance to obstacle Oi

 Often a maximum distance of influence is included

18

POTENTIAL FIELDS

2
1

1()
(,)

n

rep rep i
i

V q K
q O

2

1

1 1 (,)() (,)
0 otherwise

in
i

rep rep
i

q OV q K q O

 Distance to obstacle function
 Minimum of the distances to every point on the

boundary of the obstacle

 Gradient for distance to obstacle

 Must find closest point to evaluate either
19

POTENTIAL FIELDS

 1/2
(,) min (,) min () ()

i i

i T

c O c O
q O q c q c q c

 *
*

*(,)
(,)
q c

q c
q c

 Potential Fields
 Potential field is combination of the two fields

20

POTENTIAL FIELDS

() () ()t att t rep tV x V x V x

 Potential Fields
 Motion should then proceed in the direction of steepest

descent of the potential

21

POTENTIAL FIELDS

 *

* * 3
1

1 12 () max 0,2
(,) (,)

n
g

att rep
i

V

c
K q q K

q c q c

 Potential fields
 Pros

 Easy to implement
 Fast to compute online
 Intuitive
 Can tailor how close to go to obstacles

 Cons
 Not optimal
 No dynamic constraints considered
 Local minima
 Stability

22

POTENTIAL FIELDS

 Potential fields example
 Hardest part is defining the environment

 Non overlapping obstacles

 Define potential field only for plotting

 Gradient at current location is needed for motion

23

POTENTIAL FIELDS

 Potential Field Example
 Robot is assumed to move in direction of steepest

descent with speed equal to magnitude of gradient

 Potential is created from three elements
 Attractive potential to goal
 Repulsive potential from closest point on obstacle, up to a

range of 0.5 meters
 Repulsive potential from center of obstacle, up to a range of

4 meters

24

POTENTIAL FIELDS

 The obstacle field

25

POTENTIAL FIELDS

Start

Goal

 Potential fields example
 The potential field

26

POTENTIAL FIELDS

 Potential fields example
 Gradient field

27

POTENTIAL FIELDS

 Potential fields example
 The trajectory

28

POTENTIAL FIELDS

 The obstacle field

29

POTENTIAL FIELDS

Start

Goal

 Potential fields example
 The potential field

30

POTENTIAL FIELDS

 Potential fields example
 Gradient field

31

POTENTIAL FIELDS

 Potential fields example
 The trajectory

32

POTENTIAL FIELDS

 Extended Potential Field
 Can add effect to manage vehicle heading

 A specific adaptation for driving robots
 Rotation potential

 Add a dependence on bearing to obstacle,
 As bearing increases, reduce potential
 No point worrying about what’s behind you

33

POTENTIAL FIELDS

 Select n inputs to apply
 Eg. Const velocity, 10 different

rotation rates
 Propagate trajectory forward to

time t+T
 Check each trajectory for collisions
 Score each trajectory based on

 Progress to goal
 Distance from obstacles
 Similarity to previous choice
 Preference between input choices
 Etc…

 Pick best option and apply input
 Repeat as quickly as possible 34

TRAJECTORY ROLLOUT

 Example
 Two-wheeled robot
 n = 11 trajectories
 T = 1 second
 v = 2 m/s
 ω = [-2, 2] rad/s
 Update rate = 5 Hz

 Environments with 5 well spaced and 25 not-so-well
spaced obstacles

35

TRAJECTORY ROLLOUT

36

TRAJECTORY ROLLOUT – 5 OBSTACLES

37

TRAJECTORY ROLLOUT – 25 OBSTACLES

 Identical to Trajectory Rollout except:
 Add dynamic constraint on input choices

 Max angular acceleration limits rotation rate options at
each timestep

 Same for max translational acceleration if varying velocity

 Both are implemented in ROS navigation stack
 You’ve already used these

38

DYNAMIC WINDOW APPROACH

 Summary - Reactive Planners
 Fast computationally

 Unless entire potential field must be computed (wavefront)
 Simple control laws

 Low computation requirements
 Great for microcontroller based robots

 Difficult to find globally optimal solutions
 Do not consider dynamic constraints
 Great for 2D, and for maneuverable robots

39

PLANNING

 Planning Concepts

 Reactive Motion Planning Algorithms
 Bug
 Potential Fields
 Trajectory Rollout

 Graph Based Motion Planning
 Finding paths on graphs

 Wavefront
 Dijkstra, A*, D*

 Generating Graphs from environments
 Visibility Graphs
 Decompositions 40

OUTLINE

 Graph-Based Planning
 Suppose map can be represented by a set of nodes

and edges along which the vehicle can travel
 Can apply graph based shortest path solutions to find

a path quickly
 Optimal over graph

 Ignore dynamics

41

PLANNING

 Definition of graph
 Graph G of nodes N with edges E: G(N,E)
 Cost of traveling from ni to nj: c(ni,nj)

 c(n1,n3) = 9

42

PLANNING

2

0

3

1

8

9

5

6

7

4

7

16

9 8

7 12

8

13
13

13

9
9

11

4

13

 Neighbouring nodes
 Set of nodes adjacent to n: A(n)

 A(n5) = {n1, n3, n7}

43

PLANNING

2

0

3

1

8

9

5

6

7

4

 Current cost
 Minimum cost of getting to node n: g(n)

 g(n4) = 14

44

PLANNING

2

0

3

1

8

9

5

6

7

4

7

16

9 8

7 12

8

13
13

13

9
9

11

4

13

 Cost to go
 Cost to go heuristic from node n to the end: h(n)

 h(n4) = 22 for straight line distance metric
 Must always be less than or equal to true cost to go

45

PLANNING

2

0

3

1

8

9

5

6

7

4
22

 Cost lower bound
 Estimated cost of shortest path through node n:

f(n) = g(n) + h(n)
 f(n4) = 14 + 22 = 36

46

PLANNING

2

0

3

1

8

9

5

6

7

4
22

7

7

 Finding the shortest path over a graph
 Breadth first search

 Start at starting node
 Find all nodes that can be reached in one step (neighbours)
 For each neighbour in previous step, find all of its

neighbours, and repeat until all nodes (or end node) has
been reached

 Only works for edges of equal length

 Depth first search
 Start at starting node
 Pick an available node based on some criteria (longest,

closest to goal)
 Proceed as far as possible, then backtrack
 Continue until all nodes have been visited
 Only works for edges of equal length

47

PLANNING

 Wavefront
 If the graph produced has unit cost edges, breadth

first search can be used

 Resembles the propagation of a wave through graph
 Works well in 2D, 3D for reasonable discretizations

 Resulting cost map is monotonic
 Leads to shortest path from any point in the occupancy grid

to the final position
 Or from current position to every point in the graph

48

PLANNING

 Underlying graph structure for wavefront
 Add edges of unit cost by discretizing free space with

an occupancy grid

49

PLANNING

0

1

1

11 0

1

1

11

1 1

11

2

2

2

2

2

2

2

2

2 22

2 22

2

2

2

2

2

2

22

22

 Define two sets
 Open Set: O

 Set of nodes currently under consideration
 Initialize with start node n0

 Implemented as a queue, stack or priority queue
 Queue – breadth first search
 Stack – depth first search
 Priority queue – Dijkstra’s and A*

 Top node is first node in queue or stack form of open set
 Best node is first node in priority queue open set

 Closed Set: C
 All nodes for which processing is complete

50

PLANNING

 Breadth first search algorithm
 While top node is not goal

 Move top node from open set to closed set
 Store node, back pointer to previous node and current

cost

 Add all neighbouring nodes of top node not currently in
either set to the bottom of the open set

 Store node, current cost and back pointer to top node

 For each node already in the open set, update current cost
and back pointer if new path is shorter

51

PLANNING

() (),topf n f n n O

{ , () \ ()}topO O A n O C

for all ()

 if (() 1 ())

 backpoint to , update ()

top

top

top

n O A n

g n g n

n g n

 Wavefront Algorithm
 Initialization

 Create open set of positions, which includes only the end
point, assign a cost of 0

 Create a closed set of position, which includes all obstacles,
assign a cost of infinity

 Main loop
 First position of open set becomes active

 Move to closed set
 Identify all neighbours that can be reached and are not

already in open or closed sets
 Update each neighbour in open set with lower of the cost

through current node or previous best cost
 Assign each new neighbour a cost of the active position

+1
 Add all new neighbours to the end of the open set

 Until open set is empty 52

PLANNING

 Wavefront
 Example

53

PLANNING

 Wavefront
 Example

54

PLANNING

 Wavefront
 50x50 grid (converted to a graph and solved using

breadth first search)
 Link to video

55

PLANNING

 Wavefront
 The vehicle then identifies a path by always selecting

a position that reduces the cost to goal.
 Can be performed locally, wavefront is monotonic
 Many possible trajectories result

56

PLANNING

 Fast Marching
 Can extend the basic wavefront algorithm to use

more of a continuum based approach

57

PLANNING

 Fast Marching
Can define viscosity of flow around obstacles
Results in a smooth path that does not hug obstacle corners

58

PLANNING

 Breath-First, Wavefront and Fast Marching
 Pros:

 Monotic, always find path to goal if it exists
 Easy to implement

 Cons:
 Computes path from every point in planning space to end

goal
 Not very efficient, but fast enough for 2D

 Must treat environment as discretized graph with unit step
edges (occupancy grid)
 Approximation always leads to sub-optimality in

resulting path

59

PLANNING

 Finding the shortest path over a graph
 Dijkstra’s algorithm

 Start from starting node
 Expand all links out of the node with lowest current cost
 Find the next lowest current cost node, repeat previous step
 Stop when end goal is closed, no other path can be shorter

 A* Algorithm
 Modified version of Dijkstra’s
 Rely on edge costs and cost to go heuristic
 Pick most promising node at each step
 Cost to go heuristic should never be greater than true cost

 Can run all these algorithms from current location
forward or from end point backward 60

PLANNING

 Dijkstra’s algorithm
 While best node is not goal

 Move best node from open set to closed set
 Store node, back pointer to previous node and current

cost

 Add all neighbouring nodes of best node not currently in
either set to the open set

 Store node, current cost and back pointer to best node

 For each node already in the open set, update current cost
and back pointer if new path is shorter

61

PLANNING

() (),bestf n f n n O

{ , () \ ()}bestO O A n O C

for all ()
 if (() (,) ())
 backpoint to , update ()

best

best best

best

n O A n
g n c n n g n

n g n

 Dijkstra’s Search Algorithm
 Take best node in O and move to C
 Find all neighbours of best node, add

to O in order of current cost

62

PLANNING

2

0

3

1

8

9

5

6

7

47

16

9

7

16

9

O C
(1,-,0)

 Dijkstra’s Search Algorithm
 If a neighbour node is already in O,

keep only shortest path to it

63

PLANNING

2

0

3

1

8

9

5

6

7

47

16

9

7

16

9

O C
(2,1,7) (1,-,0)
(3,1,9)
(5,1,16)

 Dijkstra’s Search Algorithm
 Repeat for each node in O

64

PLANNING

2

0

3

1

8

9

5

6

7

47

16

9

0

14

20

7

8 9

11

O C
(3,1,9) (1,-,0)
(4,2,14) (2,1,7)
(5,1,16)

 Dijkstra’s Search Algorithm
 Repeat for each node in O

65

PLANNING

2

0

3

1

8

9

5

6

7

47

16

9

0

14

25

20

7

8 9

11

O C
(4,2,14) (1,-,0)
(5,1,16) (2,1,7)
(6,3,20) (3,1,9)

 Dijkstra’s Search Algorithm
 Repeat for each node in O

66

PLANNING

2

0

3

1

8

9

5

6

7

47

16

0

14

27

20

7

O C
(5,1,16) (1,-,0)
(6,3,20) (2,1,7)
(8,4,26) (3,1,9)
(7,5,27) (4,2,14)

12

13

26

 Dijkstra’s Search Algorithm
 Repeat for each node in O

67

PLANNING

2

0

3

1

8

9

5

6

7

47

16

0

14

25

20

7

O C
(6,3,20) (1,-,0)
(7,5,25) (2,1,7)
(8,4,26) (3,1,9)

(4,2,14)
(5,1,16)

12

13

26

 Dijkstra’s Search Algorithm
 Repeat for each node in O

68

PLANNING

2

0

3

1

8

9

5

6

7

47

16

0

14

25

20

7

O C
(7,5,25) (1,-,0)
(8,4,26) (2,1,7)

(3,1,9)
(4,2,14)
(5,1,16)
(6,3,20)12

13

26

 Dijkstra’s Search Algorithm

69

PLANNING

2

0

3

1

8

9

5

6

7

47

16

9

0

14

25

20

26

8

12

13

9

O C
(8,4,26) (1,-,0)
(9,7,34) (2,1,7)

(3,1,9)
(4,2,14)
(5,1,16)
(6,3,20)
(7,5,25)

 Dijkstra’s Search Algorithm
 Stop when end node is current

best node in open list

70

PLANNING

2

0

3

1

8

9

5

6

7

47

16

9

0

14

25

20

26

34

39

13
13

4

O C
(9,7,34) (1,-,0)
(0,8,39) (2,1,7)

(3,1,9)
(4,2,14)
(5,1,16)
(6,3,20)
(7,5,25)
(8,4,26)

 Dijkstra’s Search Algorithm
 Stop when end node is current

best node in open list

71

PLANNING

2

0

3

1

8

9

5

6

7

47

16

9

0

14

25

20

26

34

38
13

4

O C
(0,9,38) (1,-,0)

(2,1,7)
(3,1,9)

(4,2,14)
(5,1,16)
(6,3,20)
(7,5,25)
(8,4,26)
(9,7,34)

 Dijkstra’s Example
 100 nodes, all connected to 4 closest neighbours

72

PLANNING

 Finding the shortest path over a graph
 Dijkstra’s algorithm

 Start from starting node
 Expand all links out of the node with lowest current cost
 Find the next lowest current cost node, repeat previous step
 Stop when end goal is closed, no other path can be shorter

 A* Algorithm
 Modified version of Dijkstra’s
 Rely on edge costs and cost to go heuristic
 Pick most promising node at each step
 Cost to go heuristic should never be greater than true cost

 Can run all these algorithms from current location
forward or from end point backward 73

PLANNING

 A* algorithm
 While best node is not goal

 Move best node from open set to closed set

 Store node, back pointer to previous node, current cost
and lower bound cost

 Add all adjacent nodes not currently in either set to the
open set

 Store node, current cost, lower bound cost and back
pointer to nbest

 For each node already in open set, update current cost,
lower bound cost and back pointer if new path is shorter

74

PLANNING

() (),bestf n f n n O

{ , () \ ()}bestO O A n O C

for all ()
 if (() (,) () ())
 backpoint to , update (), ()

best

best best

best

n O A n
g n c n n h n f n

n f n g n

 Step 1
 Add n1 to O with a lower bound cost of 33

75

PLANNING

2

0

3

1

8

9

5

6

7

4

7

16

9 8

7 12

8

12
12

13

9
9

11

4

13

O C
(1,-,33) -

 Step 2
 Take best node in O, move it to C, store current cost

and back pointer (0,Null in this case)

76

PLANNING

2

0

3

1

8

9

5

6

7

4

7

16

9 8

7 12

8

12
12

13

9
9

11

4

13

O C
(1,-,0)

 Step 3
 Add all nodes accessible from best

node (1) to 0, ordered based on cost
estimate. If node is already in O,
update cost estimate and back pointer

77

PLANNING

2

0

3

1

8

9

5

6

7

4

7

16

9 8

7 12

8

12
12

13

9
9

11

4

O C
(3,1,34) (1,-,0)
(5,1,35)
(2,1,36)

 Step 4: Repeat steps 2 and 3
 Add n6 to 0
 Cost of n1-n3-n5 is greater than n1-n5,

keep old cost

78

PLANNING

2

0

3

1

8

9

5

6

7

4

7

16

9 8

7 12

8

12
12

13

9
9

11

4

O C
(5,1,35) (1,-,0)
(2,1,36) (3,1,9)
(6,3,38)

 Step 5
 Add n7 to 0

79

PLANNING

2

0

3

1

8

9

5

6

7

4

7

16

9 8

7 12

8

12
12

13

9
9

11

4

O C
(2,1,36) (1,-,0)
(7,5,37) (3,1,9)
(6,3,38) (5,1,16)

 Step 6
 Add n4 to 0

80

PLANNING

2

0

3

1

8

9

5

6

7

4

7

16

9 8

7 12

8

12
12

13

9
9

11

4

O C
(7,5,37) (1,-,0)
(6,3,38) (3,1,9)
(4,2,39) (5,1,16)

(2,1,7)

 Step 7
 Add n9 to 0

81

PLANNING

2

0

3

1

8

9

5

6

7

4

7

16

9 8

7 12

8

12
12

13

9
9

11

4

O C
(9,7,38) (1,-,0)
(6,3,38) (3,1,9)
(4,2,39) (5,1,16)

(2,1,7)
(7,5,25)

 Step 8
 Add n0 to 0

82

PLANNING

2

0

3

1

8

9

5

6

7

4

7

16

9 8

7 12

8

12
12

13

9
9

11

4

O C
(0,9,38) (1,-,0)
(6,3,38) (3,1,9)
(4,2,39) (5,1,16)

(2,1,7)
(7,5,25)
(9,7,38)

 Step 9
 Done, node 0 is best node in open list

83

PLANNING

2

0

3

1

8

9

5

6

7

4

7

16

9 8

7 12

8

12
12

13

9
9

11

4

O C
(0,9,38) (1,-,0)
(6,3,38) (3,1,9)
(4,2,39) (5,1,16)

(2,1,7)
(7,5,25)
(9,7,38)

 A* Example:
 100 nodes, all connected to 4 closest neighbours

84

PLANNING

 Planning Concepts

 Reactive Motion Planning Algorithms
 Bug
 Potential Fields
 Trajectory Rollout

 Graph Based Motion Planning
 Finding paths on graphs

 Wavefront
 Dijkstra, A*, D*

 Generating Graphs from environments
 Visibility Graphs
 Decompositions 85

OUTLINE

 How to make a map into a graph
 Deterministically

 Occupancy Grid-based Graph
 Visibility Graph
 Cell Decomposition
 Voronoi Diagram
 Constrained Delaunay Triangulation

 Randomly
 Probabilistic roadmaps (PRMs)

86

PLANNING

 Occupancy grid to graph
 Each cell is a node
 Can connect to 4,8 or 16 nearest

neighbours if not occupied
 Edge length either 1 unit or true

distance
 Wavefront or Dijkstra/A*

 The more connections, the harder
the search, but the more direct the
path
 Memory limitations
 Time complexity
 For small 100x100 grid

 10,000 nodes
 20,000, 40,000, 80,000 edges 87

PLANNING

 Visibility Graph
 If 2D map is defined as a polygon with polygonal

obstacles (holes)
 Connect all vertices in map to create a visibility graph

 Line of sight between each vertex pair
 Remove all edges that intersect obstacles

 Step 1: Connect start and end point to all visible
vertices

88

PLANNING

 Visibility graph
 Step 2: For each obstacle vertex reached in step 1,

add all its connections, including connections along
obstacle edges

89

PLANNING

 Visibility Graph
 Step 3: Repeat until no new edges are added

90

PLANNING

 Example of Visibility Graph
 Brute force: O(n3)

 For each connection, check n edge intersections
 10 Convex obstacles
 218 links
 4 seconds

91

PLANNING

 Visibility graph
 Can eliminate many unnecessary edges

 All edges that head into obstacle
 Nodes in regions defined by convex nodes can also be

ignored

 As a result, concave obstacle nodes can be ignored

92

PLANNING

 Example – 2D path
planning
 30 Obstacles
 Guaranteed shortest

path
 Many collision checks

 Connecting all nodes
requires 7503 edge
collision checks

 Resulting network has
 122 nodes
 976 edges

93

PLANNING

 Example – 2D path planning
 Brute Force Runtime: 30 s

94

PLANNING

 Visibility Graph
 Pros

 Guaranteed to find shortest path
 Fairly quick in 2D

 Cons
 Passes too close to obstacles
 Requires nodes and edges view of the world
 Not possible in 3D

95

PLANNING

 Trapezoidal decomposition
 2D map cut vertically at each obstacle vertex

96

PLANNING

 Trapezoidal Decomposition

97

PLANNING

 Trapezoidal Decompositon

98

PLANNING

 Topological graph from decomposition
 Create map by connecting adjacent open cells

 Adjacency graph
 Can connect cell centroids to form path (may

intersect obstacles)
 Distance between cells is unclear

99

PLANNING

 Voronoi Diagram
 An alternative that does not find the shortest path,

but perhaps the “safest” path
 Each edge is equidistant between two points
 Results in paths that are furthest away from points

100

PLANNING

 Voronoi diagrams in Matlab
 Very fast algorithm, relies on qhull software

 Cannot handle non-point obstacles

101

PLANNING

 Voronoi Diagrams in Robot Racing Planner
 Detect pylons through peak detect algorithm

102

PLANNING

 Voronoi Diagrams in Robot Racing Planner
 Create Voronoi diagram, connect graph, apply A*

103

PLANNING

 Voronoi Diagrams in Robot Racing Planner
 Connect graph using bounding box on obstacles,

apply A*

104

PLANNING

 Voronoi Diagram in Robot Racing Planner
 Simulation results

105

PLANNING

 Voronoi Racer vs Trajectory Rollout

106

PLANNING

 Voronoi Racer vs Trajectory Rollout

107

PLANNING

108

EXTRA SLIDES

 Generalized Voronoi Diagram
 Uses distance to object function (same as potential

fields)
 Find equidistant points between two obstacles
 For polygonal obstacles, results in lines, ellipse segments

109

PLANNING

 Example
 Trapezoid centroids connected in a graph
 Graph represents connectivity of space, not navigable

paths, utility of shortest path is therefore dubious

110

PLANNING

 Constrained Delaunay Triangulation
 Complex algorithm, not often used, but interesting

111

PLANNING

1 2

3
1

2
3

5

4

6

7

8

9

A B

C
D

E

 Voronoi Diagram in Robot Racing Planning
 Competition results, success!

112

PLANNING

 D*
 Dynamic A* algorithm
 Adapted to be finite horizon, replan locally with new link

information
 Intended for robots that uncover new information as they

travel
 Solve for a path from start to end using A* from end to start
 If new path length info becomes available

 Affected nodes are marked Raised
 All downstream nodes also marked raised, until all nodes that can be

affected by the change are marked
 New costs are assigned using the usual update, except that if a node

cost can be reduced, it is marked Lowered, and all upstream nodes are
improved

 The result is a sequences of downstream and upstream waves
updating the costs for only those nodes affected by the new
information

 Anthony Stentz “The Focussed D* Algorithm for Real-Time
Replanning”, In Proceedings of the International Joint Conference on
Artificial Intelligence, August 1995
 See Choset et al. Appendix H for summary 113

PLANNING

