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 p(A): Probability that A is true
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 Discrete Random Variable

 X denotes a random variable

 X can take on a countable number of values

 The probability that X takes on a specific value

 A 6-sided die’s discrete probability distribution
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 Continuous Random Variable

 X takes on a value in a continuum

 Probability density function, p(X=x) or p(x)

 Evaluated over finite intervals of the continuum
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 Measures of Distributions

 Mean

 Expected value of a random variable

 Variance

 Measure of the variability of a random variable

 Square root of variance is standard deviation, σ2 = Var(X)
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 Multi-variable distributions

 Vector of random variables

 Mean
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 Multi-variable distributions

 Covariance

 Measure of how much two random variables change 

together

 If Cov(X,Y)>0, when X is above its expected value, then Y 

tends to be above its expected value

 If Cov(X,Y)<0, when X is above its expected value, then Y 

tends to be below its expected value

 If X,Y are independent, Cov(X,Y) = 0

7

PROBABILITY

( , ) [( )( )]

[ ]

i j i i j j

i j i j

Cov X X E X X

E X X

 

 

  

 



 Multi-variable distribution

 Covariance Matrix, ∑

 Defines variational relationship between each pair of 

random variables  

 Generalization of variance, diagonal elements represent 

variance of each random variable

 Covariance matrix is symmetric, positive semi-definite
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 Multiplication by a constant matrix yields
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 Addition/Subtraction of random variables

 If X,Y independent, 
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 Joint Probability

 Probability of x and y:

 e.g. probability of clouds and rain today 

 Independence

 If  X,Y are independent, then

 e.g. probability of two heads coin-flips in a row is ¼  
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 Conditional Probability

 Probability of x given y

 Probability of KD for dinner, given a Waterloo engineer is 
cooking 

 Relation to joint probability

 If X and Y are independent,

 Follows from the above 12
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 Law of Total Probability

Discrete Continuous
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 Probability distribution

 It is possible to define a discrete probability 

distribution as a column vector

 The conditional probability can then be a matrix
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 Discrete Random Variable

 And the Law of Total Probabilities becomes

 Note, each column of p(x|y) must sum to 1
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Total probability



 Bayes Theorem

 From definition of conditional probability

 Bayes Theorem defines how to update one’s beliefs 

about X given a known (new) value of y
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 Bayes Theorem

 If Y is a measurement and X is the current vehicle 

state, Bayes Theorem can be used to update the state 

estimate given a new measurement

 Prior: probabilities that the vehicle is in any of the possible 

states

 Likelihood: probability of getting the measurement that 

occurred given every possible state is the true state

 Evidence: probability of getting the specific measurement 

recorded
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 Bayes Theorem

 Example: Drug testing

 A drug test is 99% sensitive (will correctly 

identify a drug user 99% of the time)

 The drug test is also 99% specific (will 

correctly identify a non-drug user 99% of 

the time

 A company tests its employees, 0.5% of 

whom are drug users

 What’s the probability that a positive test 

result indicates an actual drug user?
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33%,  66%, 97%, 99%???



 Bayes Theorem

 Example: Drug Testing

 Employees are either users or non-users

 The test is either positive or negative

 We want to find the probability that an employee is a user 

given the test is positive. Applying Bayes Theorem: 
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 Bayes Theorem

 Example: Drug Testing

 Prior:  Probability that an individual is a drug user

 Likelihood: Probability that a test is positive given an 

individual is a drug user 

 Evidence: Total probability of a positive test result
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 Bayes Theorem

 Example: Drug Testing

 Finally, the probability an individual is a drug user given a 

test is positive

 33% chance of that positive test result has caught a drug 

user. That’s not a great test!

 Difficulty lies in the large number of non-drug users that 

are tested

 Hard to find a needle in the haystack with a low 

resolution camera.
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 Gaussian Distribution (Normal)
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 Multivariate Gaussian Distribution (Normal)
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 Properties of Gaussians

 Linear combinations

 The result remains Gaussian!

 Note: exclamation point, because this is somewhat 

surprising, and does not hold for multiplication, division.

 Let’s take a look
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 Demonstration of combination of Gaussians

 A tale of two univariate Gaussians

 Define two Gaussians (zero mean)

 Generate many samples from each distribution (5,000,000)

 Combine these samples linearly, one sample from each 

distribution at a time

 Multiply these samples

 Divide these samples

 Create histograms of the resulting samples

 Take mean and variance of resulting samples

 Generate Gaussian fit and compare
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 Demonstration of combination of Gaussians

 A tale of two univariate Gaussians
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 Demonstration of combination of Gaussians

 Linear combination
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 Demonstration of combination of Gaussians

 Product
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 Demonstration of combination of Gaussians

 Quotient
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 Generating multivariate random noise samples

 Define two distributions, the one of interest and the 

standard normal distribution

 If the covariance is full rank, it can be diagonalized

 Symmetry implies positive semi-definiteness

 Can now relate the two distributions (linear identity)
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 To implement this in Matlab for simulation 

purposes

 Define μ,∑

 Find eigenvalues , λ, and eigenvectors, E of ∑

 The noise can then be created with
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 Confidence ellipses

 Lines of constant probability 

 Found by setting pdf exponent to a constant 

 Principal axes are eigenvectors of covariance

 Magnitudes depend on eigenvalues of 

covariance
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