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 Control Structures
 Linear Motion Models

 PID Control
 Linear Quadratic Regulator
 Tracking

 Nonlinear Motion Models
 Description of main methods
 Geometric driving controller
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OUTLINE



 Regulation
 Maintaining a constant desired state.

 Path Following
 Tracking a state trajectory defined in state only, but 

not restricted in time.

 Trajectory Tracking
 Tracking a state trajectory with explicit timing.
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CONTROL STRUCTURES



 Time-Scale Separation
 Using multi-loop 

feedback analogy
 Estimation and control 

performed much more 
quickly than mapping 
and planning

 Possible to ignore inner 
loops when developing 
higher levels of control

 Abstractions must be 
consistent
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CONTROL STRUCTURE

Actuators Vehicle Sensors

Control Estimation

Continuous Evolution

10-100 Hz

0.1-1 Hz

Path 
Planning Mapping

0.01 Hz?

Mission 
Planning

Mission
Mapping

Typical Timescales



 Separating planning and control timescales
 Pros

 Simplified planning, often to make it real-time
 Guarantees on stability
 Can operate without plan, through human-in-the-loop

 Cons
 Planning interval may require use of old state information
 Resulting trajectories may not be optimal
 Trajectories may collide with environment 
 Planner may not be able to consider dynamic constraints

 Provide infeasible paths
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CONTROL STRUCTURE



 Planner Outputs
 Full trajectory defined by open loop inputs

 At each time step, desired inputs specified
 Pre-computed open loop control
 May still require feedback for disturbance rejection
 Often not at frequency of controller
 Superscript t for trajectory
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CONTROL STRUCTURES
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 Planner Outputs
 Waypoints

 Position coordinates to achieve
 With/without timing constraints

 Joined by straight line segments to create a path
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CONTROL STRUCTURES
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 Planner Outputs
 Motion primitives

 A sequence of predefined motions
 E.g. Straight lines and curves of defined radius
 End point of each segment easily calculated
 Often parameterized to admit an array of options
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CONTROL STRUCTURES
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 Block Diagrams
 Combined Planner and Controller

 Planner generates desired state and inputs at every time 
step

 Replan given new information at each time step
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CONTROL STRUCTURES

Vehicle 
(Plant)

Planner & 
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 Block Diagrams
 Planner with Feedforward control 

 Planner generates a desired plan, t

 Direction to head in
 Speed of travel etc.

 Feedforward controller converts it into inputs
 Inverse dynamics needed to make conversion
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CONTROL STRUCTURES

Vehicle 
(Plant)

Feedforward
ControllerPlanner

t tu tx



 Open loop often works
 e.g. Open loop on RC steering

 Steering has embedded position control in servo
 From robot perspective, commanded angles are achieved
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CONTROL STRUCTURE

Image courtesy of Darren Sawicz

Motor

Gears

Potentiometer
(position sensor)

Control board



 Block Diagrams
 Planner with Feedback control for regulation

 Planner generates instantaneous desired state
 Rely on timescale separation for control design
 Used with high frequency inner loop control
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CONTROL STRUCTURES

Vehicle 
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Feedback 
ControllerPlanner
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tx 
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 Block Diagrams
 Planner with Feedback & Feedforward control

 Planner generates desired state
 Feedforward controller generates required open loop input
 Feedback controller eliminates errors from disturbances, 

unmodeled dynamics
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CONTROL STRUCTURES
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 Control Structures
 Linear Motion Models

 PID Control
 Linear Quadratic Regulator
 Tracking

 Nonlinear Motion Models
 Description of main methods
 Geometric driving controller
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OUTLINE



 Assume linear dynamics
 Start with regulation problem
 Adapt to tracking afterwards
 Control Structure: 

 Pure Feedback for regulation
 Feedforward/feedback for tracking
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LINEAR CONTROL DESIGN
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Controller
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 Proportional-Integral-Derivative control
 e.g. for velocity control of ground robots

 Particularly effective for SISO linear systems, or 
systems where inputs can be actuated in a decoupled 
manner

 Proportional and derivative govern time response, 
stability

 Integral eliminates steady state errors, sensor biases 
and constant disturbances

 Can be used to track reference signals (up to 
bandwidth of closed loop system) 17

PID CONTROL
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 Key Developments
 Angular Accel. 

Feedback
(specific thrust)

 Command Tracking
 Frame Stiffness
 Tip Vortex 

Impingement

QUADROTOR ATTITUDE CONTROL

Controller Dynamics



TRACKING REFERENCE COMMANDS

Root mean square error of 0.65º

Attitude Angles (deg) Tracking Error
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 Linear Quadratic Regulator
 Linear Plant Model
 Quadratic penalty on deviation from desired state 

and on control input usage
 The controller optimally regulates all state errors to 0

 Derivation of optimal control will rely on 
backward induction 
 Recall Dynamic Programming 
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LINEAR CONTROL DESIGN



 Discrete time version
 Same notation as Thrun, Fox
 Define initial and final times

 Linear motion model

 Disturbances can be ignored, leads to same result

 Assume we know the state at each timestep, 
including initial state 
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LINEAR QUADRATIC REGULATOR
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 Goal: Drive all states to zero!
 Regulation, not tracking

 Cost Definition:
 Tradeoff between error in states and use of control

 LQR Problem: Find sequence of inputs that 
minimizes J
 subject to dynamics, boundary conditions
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LINEAR QUADRATIC REGULATOR

   
0 0

0

: 1: 1 1 1
1

1 1,
2 2

f

f f t t tf f f

t
T T T

t t t t t t t t t t
t t

J x u x Q x x Q x u R u   
 

  

Final Cost State Cost Control Cost



 A note on “Quadratic Cost”
 Since state and input are vectors, quadratic penalties 

are written as

 Where xt is an nX1 vector, and Q is an nXn weighting 
matrix that decides how to penalize each state separately

 For example, suppose xt = [N E D], the position of a 
vehicle in North, East and Down coordinates.

 If we care more about errors in the horizontal than 
the vertical plane, we might pick a Q as follows:
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LINEAR QUADRATIC REGULATOR
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 Derivation
 Aim to formulate as a backward induction problem, 

and solve for minimum at each backward time step

 End condition is known
 Defined to have this quadratic form
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LINEAR QUADRATIC REGULATOR
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 Derivation
 Assume Jt is of specific quadratic form

 Find Jt-1 in the same form
 Done by rewriting the optimal cost as
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LINEAR QUADRATIC REGULATOR
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 Derivation
 Substituting in for Jt

 Incorporating dynamic constraints
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LINEAR QUADRATIC REGULATOR
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 Derivation
 Expanding

 Now Jt-1 is a function of only ut, xt-1 and Pt, but 
neither of the last two depend on ut

 The minimization over ut can be performed
 Set derivative to zero and solve for ut
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LINEAR QUADRATIC REGULATOR
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 Derivation
We rely on matrix derivatives

Transposing and grouping like terms together yields

Next, an inverse is applied to define the control law

28

LINEAR QUADRATIC REGULATOR
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 Derivation
 Now we must complete the backward induction and 

demonstrate that

 To do so, we substitute in the optimal control input 
and simplify
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LINEAR QUADRATIC REGULATOR
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 Derivation
 Substituting

 Regrouping, we see Jt-1 is of the right form
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LINEAR QUADRATIC REGULATOR

1 1 1 1 1

1 1 1 1

1 1 1 1

1
1
2

        

        

T
t t t t

T T
t t t

T T T
t t t t t

T T T
t t t t

T T
t t t t

t t t t

T T T T
t t t t t t t t t

Q K R K

A PA A PB K

K B

J x x x

P

x

x x x x

x xA K B P xB Kx

    

   

   

 

 

  

1

1

11
1
2

        

        

T
t t t t

T T
t t t t t t t

T T T T
t t t t t t

t

tt t

t

t

T Q K R K

A PA A PB K

K B PA K B PB K

J x

x

 





 



 







 Derivation
 Finally, substituting in for Kt yields a simplified form 

for defining the relation from Pt to Pt+1
 Will spare you the details

 As a result, we can define an update for Pt-1

 The costate update does not depend on the state.
 If you assume you will arrive at the desired end goal, can 

compute in advance 31

LINEAR QUADRATIC REGULATOR

1
1 1 1 1

1 ( )
2

T T T T T
t t t t t t t t t t t t t t t t tJ x Q A PA A PB B PB R B PA x
        

1
1 1 ( )T T T T

t t t t t t t t t t t t t t tP Q A PA A PB B PB R B PA
    



 Summary of controller
 Control

 Depends on previous state and next costate

 Costate update
 Requires evolution backward in time from end state
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LINEAR QUADRATIC REGULATOR
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 Implementation of algorithm
 Set final costate based on terminal cost matrix

 Solve for costate backward in time to initial time

 Note: Both steps depend only on problem definition, 
not initial or final conditions 33

LINEAR QUADRATIC REGULATOR
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 Implementation of algorithm
 Next, find controller to use at each time step

 Use pre-calculated costate to determine gain at time t

 Implement controller at time t using LQR gain and current 
state
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LINEAR QUADRATIC REGULATOR
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 Pictorially
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LINEAR QUADRATIC REGULATOR
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. . . utf

StartFinish

FinishStart



 Example: LQR
 Linear pitch controller for an aircraft

 Linearized about constant speed and altitude
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LINEAR QUADRATIC REGULATOR

Elevator 
Force

Wing
Lift
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Weight

Tail 
Lift



 Example: LQR
 Elevator causes moment about cg
 Tail resists rotation about cg (damping)
 Total lift and weight approximately balance
 Drag increases with elevator deflection
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LINEAR QUADRATIC REGULATOR

Elevator 
Force

Wing
Lift

Drag

Weight

Tail 
Lift



 Example
 Dynamics

 State defined as 
 Angle of attack, α
 Pitch angle, Ɵ
 Pitch rate, q

 Input is elevator deflector, δ

 If velocity and altitude are held constant, continuous 
dynamics are 
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LINEAR QUADRATIC REGULATOR

0.313 0 56.7 0.232
0 0 56.7 0

0.0139 0 0.426 0.0203q q

 
  

       
        
       

               








 Example
 Sample Code (discretized dynamics):
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LINEAR QUADRATIC REGULATOR

% Solve for costate
for t=length(T)-1:-1:1

P = Q+Ad'*Pn*Ad - Ad'*Pn*Bd*inv(Bd'*Pn*Bd+R)*Bd'*Pn*Ad;
P_S(:,:,t)=P;
Pn=P;

end

% Solve for control and simulate
for t=1:length(T)-1

K = inv(Bd'*P_S(:,:,t+1)*Bd + R)*Bd'*P_S(:,:,t+1)*Ad;
u(:,t)=-K*x(:,t);
x(:,t+1) = Ad*x(:,t)+Bd*u(:,t);

end



 Example
 Cost Matrices, Q, R = I
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LINEAR QUADRATIC REGULATOR



 Example
 Costate values

 All but (2,3) element for easy viewing
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LINEAR QUADRATIC REGULATOR



 Steady state linear quadratic regulator (SS LQR)
 If end goal is far away, steady state solution can be 

used
 Almost always the case, infinite horizon formulation

 Algebraic Ricatti Equation
 Can be solved two ways

 Through iteration 
 Set Qf to Q and run backward in time until convergence

 Analytically
 Ask Matlab (lqr(A,B,Q,R))
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LINEAR QUADRATIC REGULATOR
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 Example: SS LQR
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LINEAR QUADRATIC REGULATOR



 Q, R trade off  (ignoring terminal condition)
 Large inputs will drive state to zero more quickly
 Can define Q, R relative to each other
 Absolute value defines rate of convergence
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LINEAR QUADRATIC REGULATOR

Costs

State 
Error

Control 
Input



 Example: LQR Tradeoff
 Blue 

 Q = 0.01I
 R = 0.01I

 Red
 Q = 0.01I
 R = 0.1I

 Green
 Q = 0.01I
 R = I
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LINEAR QUADRATIC REGULATOR

Input

State

State

State



 Example
 Comparison of costs from three controllers
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LINEAR QUADRATIC REGULATOR

State 
Error

Control Effort

Blue

Red

Green



 Stochastic formulation
 Zero mean additive Gaussian noise has no effect on 

result
 Kind of surprising, but very nice

 Separation of Estimation and Control
 Can be proven to be optimal solution
 Linear Quadratic Gaussian controller 

 LQR Combined with Kalman Filter
 LQR uses mean of Kalman belief as current state estimate
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LINEAR QUADRATIC REGULATOR



 Tracking
 LQR control used with state and input offsets

 Includes LQR regulation to non-zero quantities
 Desired trajectory can be defined by inputs

 State and input deviations used in LQR

 Dynamics are the same, and control is now 
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LINEAR QUADRATIC TRACKING
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 Example: LQR 
Tracking
 Sinusoidal variation

 Trajectory driven by 
desired control input 
selection

 Initial angle of attack 
error of 1 degree

 Tracking achieved on 
identical timescale to 
LQR

 Hardest part is 
defining desired 
trajectory 

 Example of 
superposition
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LINEAR QUADRATIC TRACKING



 Control Structures
 Linear Motion Models

 PID Control
 Linear Quadratic Regulator
 Tracking

 Nonlinear Motion Models
 Description of main methods
 Geometric driving controller
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OUTLINE



 A field dominated by continuous time domain
 Nonlinear systems (ECE 688)

 Consider continuous nonlinear dynamics without 
disturbances

 Rely on timescale assumption
 Discrete output commands occur much more quickly 

than variation in system dynamics
 Estimation also fast enough and accurate enough to 

ignore 51

NONLINEAR CONTROL

( , )x f x u



 Let’s take a test case
 Two wheeled robot
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NONLINEAR CONTROL
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 Desired trajectory
 Selected to have same 

dynamics as system
 Specify desired inputs, 

and path results
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NONLINEAR CONTROL
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 Desired trajectory as Motion Primitive
 Can be used to generate a family of trajectories that 

can be used to reduce planning problem
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NONLINEAR CONTROL

Curved Trajectory Swerve Trajectory



 Desired trajectory
 Track arbitrary nonlinear 

curve
 Specify desired states, and 

control must be determined

 Careful: example violates 
forward motion constraint
 Not possible to track 

exactly 55

NONLINEAR CONTROL
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 Option 1: Feedback Linearization
 If motion is of the form

 It is sometimes possible to find a controller  which makes 
the map from v and x to dx/dt linear

 Not possible for two-wheeled robot 56

NONLINEAR CONTROL
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 Option 2: Backstepping control
 If we have a feedback linearizable system for which 

the inversion results in large inputs, can elect to 
leave some of the nonlinearity in the plant

 If a control is known for a subsystem of derivative 
terms, then a controller for the full system can be 
developed one derivative at a time

 Relies on Lyapunov stability argument to construct 
each successive controller and ensure stability
 Not always easy to do!

 Not possible for two-wheeled robot 57

NONLINEAR CONTROL



 Option 3: Sliding Mode Control
 If a trajectory is known to converge to a desired 

equilibrium, regulation is possible
 Find a control law that drives the system to the 

trajectory
 Follow the trajectory to the equilibrium

 Is possible for two-wheeled robot
 Issues relating to control chattering can be addressed 58

NONLINEAR CONTROL



 Many nonlinear control methods exist
 Can work very well if the system is of the right form
 Usually rely on knowing dynamics and derivatives 

exactly
 Smooth derivatives required
 Modeling issues, robustness of inversion
 In practice, each nonlinear system is analyzed 

individually

 Continue with ground vehicle example
 Slightly more complicated kinematics
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NONLINEAR CONTROL



 Motion Control for an automobile
 Define error dynamics relative to desired path
 Select a control law that drives errors to zero and 

satisfies input constraints
 Prove stability of controller
 Add dynamic considerations to manage unmodeled

effects
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DRIVING CONTROLLER



 Goal of controller
 To track straight line trajectories 

 from one waypoint to the next
 Also works on corners, smooth paths
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DRIVING CONTROLLER



 Approach
 Look at both the error in heading and the error in 

position relative to the closest point on the path
 Perpendicular distance for straight line segments
 Can become ambiguous for curves, usually well defined 

 Use the center of the front axle as a reference point

 Define an intuitive steering law to 
 Correct heading error
 Correct position error
 Obey max steering angle bounds
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DRIVING CONTROLLER



 Description of vehicle
 All state variables and inputs defined relative to 

center point of front axle
 Steering relative to heading (in opposite direction): δ
 Velocity in direction of front wheels: vf

 Heading relative to trajectory: ψ
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DRIVING CONTROLLER

fv



 Description of vehicle
 Crosstrack error: e

 Distance from center of front axle to closest point on 
trajectory
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DRIVING CONTROLLER

fv



 Error Dynamics
 Heading error

 Rotation about rear wheel center point (ICR, again)
 Component of velocity perpendicular to trajectory
 Desired heading is 0
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DRIVING CONTROLLER
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 Error Dynamics
 Rate of change of cross track error

 Component of velocity perpendicular to trajectory
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DRIVING CONTROLLER
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 Proposed heading control law
 Combine three requirements

 Steer to align heading with desired heading
 Proportional to heading error

 Steer to eliminate crosstrack error
 Also essentially proportional to error
 Inversely proportional to speed
 Gain k determined experimentally
 Limit effect for large errors with inverse tan

 Maximum and minimum steering angles
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DRIVING CONTROLLER

1 ( )( ) tan
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 Combined steering law

 For large heading error, steer in opposite direction
 The larger the heading error, the larger the steering 

correction
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DRIVING CONTROLLER
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 Combined steering law

 For large positive crosstrack error

 The larger the crosstrack error, the larger the steering 
angle required by this part of the control

 As heading changes due to steering angle, the heading 
correction counteracts the crosstrack correction, and drives 
the steering angle back to zero 69

DRIVING CONTROLLER
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 Combined steering law
 The error dynamics when not at maximum steering 

angle are

 For small crosstrack errors

 Exponential decay of error
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DRIVING CONTROLLER
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 Example code
 Implement the error dynamics directly.
 Explore various initial conditions to understand how 

the controller works.
 Add in noise/disturbances and assess how the 

controller reacts.
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DRIVING CONTROLLER

fv



 Example – Large initial crosstrack error
 Crosstrack error of 5 meters

 Max steer 25°, speed 5 m/s
 Gain k = 2.5, Length l = 1 m
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DRIVING CONTROLLER



 Example – Effect of speed variation
 Crosstrack error of 5 meters

 Speeds  2, 5, 10 m/s

73

DRIVING CONTROLLER



 Example – Large Error in Heading
 Max steer 25°, speed 5 m/s
 Gain k = 2.5, Length l = 1 m
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DRIVING CONTROLLER



 Adjustments
 Low speed operation

 Inverse speed can cause numerical instability
 Add softening constant to controller

 Extra damping on heading
 Becomes an issue at higher speeds in real vehicle

 Steer into constant radius curves
 Improves tracking on curves by adding a feedforward term 

on heading
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DRIVING CONTROLLER

1 ( )( ) ( ) tan
( )s f

ke tt t
k v t

    
    



 Results
 National Qualifying event
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DRIVING CONTROLLER



 Create a simulation of bicycle model with noise 
on steering angle and speed inputs

 Add Stanley controller

 Experiment with low speed and damping issues

 Identify feedforward term for tracking curves
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EXERCISE – CHALLENGE PROBLEM
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EXTRA SLIDES



 Option 1: Linearize about current state, control 
and apply LQR
 “Extended Linear Quadratic Regulator”

 Both matrices linearized about current control 
inputs, but are used to find the control to apply

 Therefore, must iterate solution to be linearizing
about correct point
 Inefficient, poor convergence
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NONLINEAR CONTROL
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 Phase portrait 
 vf = 5 m/s, k = 2.5, l = 1 

m
 Allows comparison of 

crosstrack and heading 
error evolution

 Arrows represent 
derivatives of axes

 Red lines are boundaries 
of regions

 All arrows enter interior
 Only one equilibrium
 Crosstrack error 

decreasing in interior
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DRIVING CONTROLLER



 Global Convergence Proof
 Split into three regions

 Max steering angle
 Min steering angle
 Interior

 Show trajectory always exits min/max regions
 Show unique equilibrium exists at origin
 Show interior dynamics always strictly decrease 

crosstrack error magnitude
 Show that heading converges to crosstrack error 
 Show that if trajectory exits interior and enters 

min/max regions, it returns to interior with smaller 
errors
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DRIVING CONTROLLER



 Velocity control law
 PI control to match planner speed recommendations 

 Curve limitations 
 Side force constraints to avoid wheel slip

 Terrain knowledge

 Combined command of brake and throttle
 Brake cylinder pressure command 
 Throttle position command
 Susceptible to chatter

 More interesting problem: deciding what speed to 
drive

82

DRIVING CONTROLLER


