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COMPONENTS

Actuators Vehicle Sensors

Control Estimation

Hardware 

Vehicle Autonomy

Environmental Autonomy

Path 
Planning Mapping

Mission Autonomy

Mission 
Planning

Mission
Mapping



 Localization – Determining position relative to known 
environment
 EKF
 Particle

 Mapping – Determining environment relative to 
known position
 Feature based (not covered)
 Occupancy grid based

 Simultaneous Localization and Mapping – unknown 
position and environment
 EKF SLAM
 Particle based FastSLAM
 Occupancy Grid SLAM
 Iterated Closest Point Scan Matching
 Pose Graph Optimization 3

OUTLINE



 Map Types
 Location based

 Map is defined by 
occupancy of each 
location

 Can be probabilistic in 
formulation

 Scales poorly 
 Works well in two 

dimensions (planar 
position)
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 Map Types
 Feature Based

 A feature is defined at a 
specific location, and may 
have a signature

 The set of all features 
defines the map

 Effective for localization

 Scales well to larger 
dimensions 

 Hard to use for collision 
avoidance 5

LOCALIZATION AND MAPPING

1{ , , }Mm m m 

1

2 3

4

5

{ , , }i i i im x y s
{ , , }i i i im r s





 Localization
 Using sensor information to locate the vehicle in a 

known environment

 Given:
 Control inputs and motion model
 Sensor measurements and measurement model relative to 

environment
 Environment model

 Find:
 Vehicle position
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 Localization Problems

 Initial conditions
 Local: Known initial position

 Tracking position through motions with inputs and 
measurements

 Global: Unknown initial position
 Finding position and then continuing to track

 Kidnapped: Incorrect initial position
 Correcting incorrect prior beliefs to recover true position 

and motion
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 Assumptions
 Known static environment

 No moving obstacles, or other vehicles that cannot be 
removed from sensor measurements

 Passive Estimation
 Control law does not seek to minimize estimation error

 Single vehicle
 Only one measurement location is available

 Each assumption can be addressed through more 
complex algorithms 
 Good starting points available in Thrun et al.
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 Feature-based localization
 Most natural formulation of localization problem

 Sensors measure bearing, range, relative position of 
features

 Location based maps can be reduced to a set of measurable 
features

 The more features tracked the better the solution
 But the larger the matrix inverse at each timestep
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 Example: Two-wheeled robot
 Vehicle State, Inputs:

 Motion Model
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 Example: Feature Map

 Assume all features are uniquely identifiable
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 Example: Measurement Model
 Relative range and/or bearing to closest feature mi, 

regardless of heading
 Assume measurement of closest feature only
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 We’ll try localization with two approaches

 EKF (UKF) based localization
 Fast computationally
 Intuitive formulation
 Most frequently implemented
 Possibility for divergence if nonlinearities are severe
 Additive Gaussian noise

 Particle filter based localization
 Slightly cooler visualizations
 More expensive computationally
 More capable of handling extreme nonlinearities, 

constraints, discontinuities 13
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 Recall Extended Kalman Filter Algorithm
1. Prediction Update

2. Measurement Update
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 Linearization of Motion Model
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 Linearization of Measurement Model

 where
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 Five features in a 2D world
 No confusion over which is which

 Correct correspondence
 Two wheeled robot (x,y,θ)
 Measurement to feature of Range, bearing, both
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EKF LOCALIZATION - SIMULATION



 Example
 Both measurements, very low noise, correct prior
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True state            -o-
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 Example with moderate noise
 Both measurements noisy, correct prior, large disturbances
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 Example with moderate noise
 Range only, correct prior
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 Example with moderate noise
 Bearing only, correct prior
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 Example with moderate noise
 Bearing only, incorrect prior of [2 -1 pi/4]
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 Particle Filter implementation

 All the components are defined above
 Same prior
 Same motion model
 Same measurement model
 Standard particle filter implementation
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 Recall the Particle Filter Algorithm (simplified)
1. For each particle in 

1. Propagate sample forward using motion model (sampling) 

2. Calculate weight                                                (importance)

3. Store in interim particle set

2. For j = 1 to D
1. Draw index i with probability                           (resampling)

1. Add to final particle set
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 Particle Filter results
 Range & bearing measurements with 500 particles
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 Particle Filter results
 Range only with 500 particles
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 Particle Filter results
 Range & bearing with 100 particles, poor prior 
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 Particle Filter results
 Range & bearing with 100 particles, poor prior, large 

disturbance
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 Feature Based Localization
 Unknown Correspondences

 It may not be obvious from measurements which feature 
has been measured

 A major issue with all real world implementations
 Popularity of SIFT/SURF features arises from 

uniqueness of signature
 Corners, edges, color blobs etc. not easy to distinguish
 Maximum Likelihood correspondence
 Augmented with geometric configuration of matches
 Random Sample Consensus
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 Unknown Correspondence
 Maximum Likelihood Correspondence

 Find the most likely feature a measurement corresponds to 
based on state and measurement info

 Works poorly if many features are equally likely
 Integer optimization 

 Exponential complexity growth in the number of 
variables

 Often avoided by doing correspondence for each 
measurement independently

 Suboptimal, could get multiple distinct measurements 
assigned to the same feature 30
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 Random Sample Consensus (RANSAC)
 While not out of time

 Pick a small subset of measurement correspondences

 Perform temporary measurement update with this subset

 Find all features that agree with current estimate to within 
a fixed threshold (identify inlier set)

 Select largest inlier set, reject all outliers

 Recompute solution using the inlier set
31
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 Nonlinear least squares using bearing measurements 
in 2D
 Known map of features
 A subset fall in the field of view of the robot (50 m, 60 ○)
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RANSAC EXAMPLE

o Visible
o Not Visible 
X Robot



 Nonlinear least squares using bearing measurements 
in 2D
 Measurements to features are bearings
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RANSAC EXAMPLE

o Visible
o Not Visible 
X Robot
X Measured 
feature
_ Bearing



 Nonlinear least squares using bearing measurements 
in 2D
 Given an initial estimate of the pose of the robot and a 

measurement model,

 Solve nonlinear least squares problem (NLLS)

 Analogous to EKF, without motion update
 At each step, find linear least squares solution, then relinearize

and repeat until convergence
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 Nonlinear least squares using bearing measurements 
in 2D
 Prior x0 = [ 10 20 90]
 Solution with 20 measurements, usually works.
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o Visible
o Not Visible 
X Robot
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 Nonlinear least squares using bearing measurements 
in 2D
 Add a certain percentage of outliers to the mix (e.g. 20%)

 Measurements to the incorrect map feature
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o Visible
o Not Visible 
X Robot
- Outliers



 Nonlinear least squares using bearing measurements 
in 2D
 Apply RANSAC to remove outliers and still get a good 

estimate (e.g. 100 iterations)
 Pick small feature set (5 features) and solve NLLS
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 Nonlinear least squares using bearing measurements 
in 2D
 Apply RANSAC to remove outliers and still get a good 

estimate (e.g. 100 iterations)
 Pick small feature set (5 features) and solve NLLS
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o Visible
o Not Visible 
X Robot
X Measured 
feature
_ Bearing
x- Solution



 Nonlinear least squares using bearing measurements 
in 2D

 Find inlier set of all measurements that agree with current seed 
solution
 Threshold on measurement error
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o Visible
o Not Visible 
X Robot
x Inlier set
_ Bearing
x- Solution



 Nonlinear least squares using bearing measurements 
in 2D

 Repeat many times and save biggest inlier set
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 Nonlinear least squares using bearing measurements 
in 2D

 Final solution looks quite good, and inlier set includes almost all 
measurements taken.

 Not very expensive compared to finding features in the first place.
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o Visible
o Not Visible 
X Robot
x Inlier set
_ Bearing
x- Solution



 Mapping
 Using sensor information from known vehicle 

locations to define a map of the environment 

 Given:
 Vehicle location model
 Sensor measurements and inverse measurement model

 Find:
 Environment map
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 Occupancy Grid Mapping
 Find probability at time t that each grid cell contains 

an obstacle

 Subscript t moved to emphasize that features are static

 Assumptions
 Static environment
 Independence of cells
 Known vehicle state at each time step
 Sensor model is known
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 Recall Discrete Bayes Filter Algorithm 
1. Prediction update (Discrete Total probability)

1. Measurement update (Bayes Theorem)

 η is a normalizing constant that does not depend on the 
state (will become apparent in derivation)

44

MAPPING

1 1( ) ( | , ) ( )t t t t tbel x p x u x bel x  

( ) ( | ) ( )            t t t tbel x p y x bel x



 Bayes Filter with static states
 Since the cell contents do not move, the motion model 

is trivial
 The predicted belief is simply the belief from the previous 

time step

 The prediction step is no longer needed, so we update with 
each new measurement regardless of vehicle motion
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 Log Odds Ratio
 Instead of tracking the probability, we track the log 

odds ratio for each cell

 Referred to as logit function (logistic regression) 46
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 Log odds ratio
 The big advantage is in dealing with low (and high) 

probability discrete states
 Avoids issues with truncation in multiplicative combination 

of probabilities

 As we’ll see, the update rule involves addition only

 Can always recover probability with
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 Bayesian log odds update derivation
 For each cell, we have a measurement update (with 

the normalizer defined explicitly)

 We still trust in the Markov assumption
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 Bayesian log odds update derivation
 Let’s apply Bayes rule to the measurement model

 Combining
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 Bayesian log odds update derivation
 The same holds for the opposite event

 Combining to get ratio
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 Bayesian log odds update derivation
 The ratio can now be simplified

 And rewritten as
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 Bayesian log odds update derivation
 It is now possible to form the log odds ratio, 

expanding the negated terms

 Finally, taking the log yields
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 Bayesian log odds update
 A shorthand version of the update rule is

 The log odd ratio at t is the sum of the ratio at t-1 + 
the inverse measurement ratio – the initial belief

 To get the inverse measurement ratio, we need an 
inverse measurement model
 Probability of a state given a certain measurement occurs

 Inverse conditional probability of the measurement models 
used to date 53
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 Example: Laser Scanner
 Returns a range to the closest objects at a set of 

bearings relative to the vehicle heading
 Scanner bearings

 Scanner ranges
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 Example: Laser Scanner
 Inverse measurement model - easy

 In 2D environment, three regions result

 Simple and useful model, many improvements possible
 See Thrun et al. Chap 6 55
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 Example: Laser Scanner
 Inverse measurement model - easy

 Define relative range and bearing to each cell

 Find relevant range measurement for that cell
 Closest bearing of a measurement
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 Example: Laser Scanner
 Inverse measurement model - easy

 Identify each of the three regions and assign correct 
probability of object

 if

 then no info

 else if 

 then high probability of an object

 else if 

 then low probability of an object 57
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 Example: Laser Scanner
 Inverse measurement model - easy

 The parameters α and β define the extent of the region to be 
updated
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 Example
 Simple motion

 Move up until stuck
 Turn right
 Repeat
 Rotate scanner at 

each timestep
 Fixed map
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 Example
 17 Measurements

 46 degree FOV
 30 m max range
 1 set of measurements per 

time step
 Probability of object at 

scan range: 0.6
 Probability of no object in 

front: 0.4
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 Results
 Map results

61

MAPPING



 Inverse Measurement model - accurate
 Instead of updating each cell once for a complete scan
 Perform one update per range measurement

 Raytracing using Bresenham’s line algorithm
 Bresenham at IBM  in 1962
 Used to draw lines for a plotter
 Converted ray tracing into integer math update
 Function provided in matlab library, details in 

extra slides

62

MAPPING



 Revisiting mapping with Bresenham’s line 
algorithm
 Inverse measurement model
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 Revisiting mapping with Bresenham’s line 
algorithm
 Resulting map
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 Computation Issues
 Grid Size

 Calculation grows as resolution of grid increases
 Topological approximations possible

 Measurement model pre-caching
 Model does depend on state, but does not change, so entire 

model can be pre-calculated

 Sensor subsampling
 Not all measurements need be applied, may be significant 

overlap in scans

 Selective updating
 Only update cells for which significant new information is 

available. (Do not update 3rd region). 65
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 Start with Simple Line Algorithm
 Between 0-45 degrees, x increases faster than y

 For all other ranges performed similarly, by switching x for y
and flipping signs

 Step one column at a time (move incrementally in x)
 Decide if y should be incremented

 Initialization: given (x0, y0, x1, y1)
 Slope = (y1 - y0 ) / (x1-x0)
 error = 0
 y = y0 

 Main loop: for x from x0 to x1 
 plot(x, y) 
 error := error + slope*1
 if error ≥ 0.5 

 y := y + 1 
 error := error - 1.0 67
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 Simple line algorithm works well with a couple of 
exceptions
 Floating point math, slower than necessary
 Rounding error can lead to problems (addition of 

slope*1 at each step)
 Bresenham found a way to solve these problems 

by converting to integer math
 Uses the following line definition
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 Bresenham’s line algorithm
 Δx, Δy, b are all integers, as are x,y for any pixel 

location
 Start and end pixels define delta Δx, Δy
 Offset b at x = 0 is also in pixels

 Given a line of this form

 Any point (x,y) not on the line has 
 Above the line is positive
 Below the line is negative
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 Bresenham’s line algorithm
 Starting at (x0,y0), can now define two possible next 

pixels to add
 (x0+1,y0+1) or (x0+1,y0)
 Should select the one closer to the line 

 arg min (f(x0+1,y0), f((x0+1,y0+1))

 To find out which, look at sign of line equation at 
f(x0+1,y0+1/2)
 If > 0 pick lower
 If < 0 pick upper
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 Bresenham’s line algorithm
 Since we only care about the sign, can equally check 

the following line equation

 And better, we take the following difference

 Since 2f(x0,y0) is on the line, it is equal to 0, so the 
sign of the difference D is all we need.
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 Bresenham’s line algorithm
 This decision takes us one step forward along the line
 To do the next step, we consider 2f(x0+2,y0+1/2) for 

this example, or 2f(x0+2,y0+3/2) if the line was 
steeper

 Looking at the differences for those two points 
relative to the current midpoint value gives us an 
iterative update method for the difference value in 
the next column 72
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 Bresenham’s line algorithm
 So we can pick the right piece to add to D, and make 

the next decision
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 Bresenham’s line algorithm
 function line(x0, y0, x1, y1) 
 dx := abs(x1-x0) 
 dy := abs(y1-y0) 
 Inc1 = 2*dy
 Inc2 = 2*dy-2*dx
 D = 2*dy-dx
 loop 

 plot(x0,y0) 
 if x0 = x1 and y0 = y1 

 return
 x0 =x0+1;
 if D < 0 

 D = D+Inc1 
 Else

 D = D+Inc2
 y0 = y0+1
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