
ME 597: AUTONOMOUS MOBILE ROBOTICS
SECTION 8 – PLANNING III

Prof. Steven Waslander

2

COMPONENTS

Actuators Vehicle Sensors

Control Estimation

Hardware

Vehicle Autonomy

Environmental Autonomy

Path
Planning Mapping

Mission Autonomy

Mission
Planning

Mission
Mapping

 Optimal Planning

 Motion Planning with Nonlinear Programming

 Receding Horizon Planning

3

OUTLINE

Non-Linear Program (NLP)
 (P) Convex problems are easy to solve
 Non-convex problems harder, not guaranteed to

find global optimum (local minima can occur)

OPTIMAL PLANNING
M

E
 780: A

utonom
ous M

obile
R

obotics

4

min ()

() 0
s.t.

() 0

nx
f x

g x
h x

:
:
:

n

n m

n p

f
g
h

 Application to mobile robotics
 It is possible to formulate motion planning with

NLPs
 However, a poorly formulated problem may not converge
 Not guaranteed to find a global optimum, can be stuck in

very poor solutions

 Obstacles are particularly hard
 Difficult for continuous algorithms to jump from one side to

other

 Initial feasible solution required, but impacts
solution quality

5

NONLINEAR PROGRAMMING

 Path Planning Example
 Dynamics – our favorite two wheeled robot

 Initial feasible solution
 Set velocity and turn rate to zero, hold initial position
 Pick feasible inputs and propagate dynamics

 Ensure constraints are not violated

6

NONLINEAR PROGRAM

1, 1, 1 1, 3, 1

2, 1 2, 1 1, 3, 1

3, 3, 1 2,

cos
(,) sin

t t t t

t t t t t t

t t t

x x u x dt
x g x u x u x dt
x x u dt

 Trajectory Tracking Example
 Initial position

 Input bounds on velocity and turn rate

 Desired trajectory

 Heading not specified, so not penalized in cost
7

NONLINEAR PROGRAM

0 [0 2 0]p

 () sin(0.3) Tdx t t t

 Trajectory Tracking Example
 Costs

 Quadratic deviation from desired trajectory

 Quadratic penalty on inputs

8

NONLINEAR PROGRAM

2

1

() || ||
T

d
d t t

t

f x K x x

1 2

2 2
1, 2,

1

()
T

u t u t
t

f x K u K u

 Implementation in Matlab
 Use fmincon function

[X,FVAL,EXITFLAG,OUTPUT,LAMBDA] =
fmincon(@(x) cost(x),x0,A,B,Aeq,Beq,LB,UB,@(x)

constraints(x), options);

 Notation – defining functions for Matlab to use

 @(x) cost(x) is a function handle to function
cost(x), which is a function of x (@(x))

9

NONLINEAR PROGRAM

 Implementation in Matlab
 Must provide two functions for this optimization

 Cost function that takes current x and returns cost
f = cost(x)

 Nonlinear constraints function that takes x and returns
g(x) and h(x) (g(x)<=0, h(x)=0)

[Gineq, Heq] = constraints(x)

 To provide information other than x,
 Use global variables (declared at top of main and

function)
global xd T dt

 Pass in additional arguments to fmincon after options

10

NONLINEAR PROGRAM

 Trajectory Tracking Example
 Low weights on inputs
 Tracks very well
 Plans reconnect to desired trajectory nicely

11

NONLINEAR PROGRAM

Desired
Actual

 Trajectory Tracking Example
 Higher weights on turn rate input
 Starts to trade off tracking and input
 End condition has a big impact on solution

12

NONLINEAR PROGRAM

 A big benefit of the NLP formulation is the
ability to add nonlinear constraints
 Obstacles

 Must be defined so as to permit smooth derivatives
 Circles work well for this

 Define center xi and radius ri of circular obstacle i.

13

NONLINEAR PROGRAM

 2 2() || || 0i i
tg x r x x

ir

()g x

r

 Trajectory Tracking with obstacles
 20 timesteps
 6 obstacles
 Large input bounds

 Initial conditions
 Stay at x0

 v0, w0 = 0

 Local minimum

14

NONLINEAR PROGRAM

 Trajectory Tracking with obstacles
 20 timesteps
 6 obstacles
 Large input bounds

 Issues
 Discretization
 Allowable inputs

 Solutions
 Smaller discretization, longer computation time
 Continuous formulation

 single shooting, multiple shooting, collocation
 Also enable minimum time problem formulations 15

NONLINEAR PROGRAM

Problem 10 20 40 Comment
NLP 8 s 28 s 96 s 1 run

NLP - Obs 9 s 35 s 388 s 1 run

16

RUN TIMES

 Very approximate run times
 Based on small sample size
 Highly dependent on problem instance for obstacles

 Optimal Planning

 Motion Planning with Nonlinear Programming

 Receding Horizon Planning

17

OUTLINE

 Instead of solving for the entire plan, plan as you
go along
 Continuously use computation resources
 Smaller optimization problem at each step
 More susceptible to local minima

 Escape from minima must be possible within horizon

 Receding Horizon Control also called Model
Predictive Control (MPC) 18

RECEDING HORIZON APPROACH

 Algorithm
 Pick receding horizon length T
 At each timestep

 Set initial state to predicted state
 Perform optimization over finite horizon
 Apply control from first timestep of previous iteration
 Predict state at next time step using motion model

19

RECEDING HORIZON CONTROL

t-1 t

Move to xt

Compute ut+1:t+T

At xt, apply ut+1At xt-1, apply ut

 Pictorially

 1)

 2)

 3)

20

RECEDING HORIZON CONTROL

 NLP Example with RHC
 Horizon T=5

 1-2 seconds per time step

21

RECEDING HORIZON CONTROL

 Comments
 Originally developed for process control

 1-2 hour updates, trying to model complex chemical
processes

 Even more susceptible to local minima than full NLP
 Since NLP complexity is roughly O(n3), this can be a

big computational savings
 All DARPA Grand and Urban challenge vehicles had

some form of RHC for path planning
 Similar to trajectory rollout

 An optimization instead of a fixed discrete search

22

RECEDING HORIZON CONTROL

23

EXTRA SLIDES

 Linear Program (LP)
 (P) Easy, fast to solve, convex

 Matlab command:
x = linprog(f, A, b, Aeq, beq, LB, UB, x0)

 Almost no planning problems are linear (trivial
example in the extra slides) 24

OPTIMIZATION PROBLEM TYPES

min

s.t.

n

T

x X

eq eq

f x

Ax b
A x b

 Simplex Method
 Optimum must be at the intersection of constraints
 Intersections are easy to find, change inequalities to

equalities, add slack variables
 Jump from one vertex to the next (in a smart way),

until no more improvement is possible

SOLUTION METHODS FOR LINEAR PROGRAMS

-fT

x1

x2

25

SOLUTION METHOD FOR LINEAR PROGRAMS

 Interior Point Methods
 Apply Barrier Function to each constraint and sum
 Primal-Dual Formulation
 Newton Step or other
 At each iteration,

increase slope of barriers
 Benefits

 Scales better than Simplex
 Certificate of Optimality

 Stop whenever
 Know how close to optimal

the current solution is
 Relies on duality

-fT

x1

x2

26

 Path Planning example
 Note: It is difficult to devise a real world robotics

problem that is an LP

 Linear dynamics

27

LINEAR PROGRAM

1

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

t t t

dt
dt

x x u
dt

dt

1t t tx Ax Bu

 Path Planning example
 Initial and final positions

 Minimum and maximum inputs

 Minimum and maximum positions

 Define normal to line and offset

28

LINEAR PROGRAM

0 0x p
Ft Fx p

tu u u

1:2,tx X
X

Fp

5x y

5

5

 Path Planning Example
 Formulation as a Linear Program

 Define time horizon: T
 Define time step: dt

 Number of states: n
 Number of inputs: m

 Number of optimization variables per timestep: N=n+m
 Total number of optimization variables: M = N*T

 Optimization vector:

 Extra set of inputs, constrain to zero 29

LINEAR PROGRAM

0 1 1[]
F F

T
t tx x u x u

 Path Planning example
 Costs

 Must be a linear combination of
states and inputs

 Maximize x+y position (avoid origin)
 Minimize speed
 Minimize use of control inputs

 For distance from desired, can use L1
norm

 Requires transformation of variables 30

LINEAR PROGRAM

2

1
1

|| ||d d
i i

i

x x x x

 1
1(,) 1 1 1 1 3 3 t

t t t
t

x
f x u

u

dx

O

 Path Planning Example
 Formulation as a Linear Program

 Define cost:

 Define equality constraints for dynamics
 Rewrite in standard form

 Specify for each timestep

31

LINEAR PROGRAM

1
1

() (,)
T

t t t
t

f x f x u

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

A B I
A B I

Aeq

A B I

1 0t t tAx Bu x

0Beq

 Path Planning Example
 Other equality constraints added to the bottom of the

Aeq and Beq matrices

 Inequality constraints also compiled into a single
Aineq, Bineq matrix pair
 One set of constraints to add at each time step

 Bounds on inputs
 Bounds on state
 Region definition

32

LINEAR PROGRAM

0 0x p
Ft Fx p

 Path Planning Example
 The resulting Aeq sparsity pattern

 spy(A) in Matlab

33

LINEAR PROGRAM

 Path Planning Example
 Equality constraints code

34

LINEAR PROGRAM

n = length(A(1,:));
m = length(B(1,:));

% Dynamics
for i=1:T-1

Aeq(n*(i-1)+1:n*i, (n+m)*(i)+1:(n+m)*(i)+4) = -eye(n);
Aeq(n*(i-1)+1:n*i, (n+m)*(i-1)+1:(n+m)*(i-1)+4) = A;
Aeq(n*(i-1)+1:n*i, (n+m)*(i-1)+5:(n+m)*(i-1)+6) = B;
beq(n*(i-1)+1:n*i) = zeros(n,1);

end

% Initial and Final Conditions
Aeq(n*(T-1)+1:n*(T-1)+n,1:n) = eye(n);
Aeq(n*(T-1)+n+1:n*(T-1)+2*n+m,(n+m)*(T-1)+1:(n+m)*T) = eye(n+m);
beq(n*(T-1)+1:n*(T-1)+2*n+m,1) = [p0'; pF'];

 Path Planning Example
 The resulting Aineq sparsity pattern

 spy(A) in Matlab

35

LINEAR PROGRAM

 Path Planning Example
 Inequality constraint code

 Could also be included in bounds on state/inputs

36

LINEAR PROGRAM

g = [0 1; 0 -1; 1 0; -1 0];
b = [4.2; 0; 4.2; 0];
q = length(g(:,1));

for i = 1:T
Aineq(q*(i-1)+1:q*i, (n+m)*(i-1)+1:2:(n+m)*(i-1)+3) = g;
bineq(q*(i-1)+1:q*i) = b;

end

 Path Planning Example
 Once all of the setup is complete

37

LINEAR PROGRAM

[X,FVAL,EXITFLAG,OUTPUT,LAMBDA] =
linprog(f,Aineq,bineq,Aeq,beq,LB,UB,x0,options);

Residuals: Primal Dual Upper Duality Total
Infeas Infeas Bounds Gap Rel
A*x-b A'*y+z-w-f {x}+s-ub x'*z+s'*w Error

Iter 0: 6.22e+002 3.74e+001 8.02e+002 9.18e+004 2.69e+000
Iter 1: 4.67e+000 9.61e-015 6.02e+000 2.27e+003 1.20e+000
Iter 2: 7.64e-011 2.44e-013 0.00e+000 9.27e+001 3.17e-001
Iter 3: 1.56e-010 4.43e-014 3.08e-015 2.19e+001 7.54e-002
Iter 4: 5.00e-011 6.75e-015 0.00e+000 6.13e+000 2.12e-002
Iter 5: 3.16e-011 6.30e-015 2.51e-015 9.12e-001 3.17e-003
Iter 6: 5.20e-011 6.54e-015 2.51e-015 9.89e-003 3.44e-005
Iter 7: 2.72e-011 6.48e-015 1.78e-015 4.95e-007 1.72e-009

Optimization terminated.

 Path Planning Example
 Initial location

 Final location

 Allowable region

 Cost per timestep Control bounds
38

LINEAR PROGRAM

0 [1 3]p

[4 1]Fp

{(,) | , [0,4.2]}X x y x y

| | 5u 1
1(,) 1 1 1 1 3 3 t

t t t
t

x
f x u

u

 Path Planning Example,
 More time

 T = 40

 Allowable region

 Control bounds

39

LINEAR PROGRAM

{(,) | , [0,4.2]}X x y x y

| | 5u

 Path planning example
 Lagrange multipliers for all inequality constraints

 All four sides of environment at each timestep

40

LINEAR PROGRAM

 Path planning example
 Lagrange multipliers for all variable bounds

 Four states and two inputs at each timestep

41

LINEAR PROGRAM

Lower Upper

 Quadratic Program (QP)
 (P) Quadratic cost with linear constraints O(n3)

 Still fairly easy, fast to solve and convex

 Matlab command:
x = quadprog(Q, A, b, Aeq, beq, LB, UB, x0)

 Kalman filter, LQR (unconstrained)
 In fact, any convex problem can be solved quickly

 Matlab toolbox: cvx 42

OPTIMIZATION PROBLEM TYPES

min

s.t.

n

T

x X

eq eq

x Qx

Ax b
A x b

 Sequential Quadratic Programming
 Also an interior point method
 At each iteration, calculate gradient and Hessian of

Lagrangian
 If problem is a quadratic program, apply Newton step

to optimal solution
 If not, use Newton step direction as a descent

direction and apply a line search
 Finding Newton step involves inverse of Hessian

43

SOLUTION METHODS FOR NLPS

 Key insight into problem formulation
 Since binary/integer variables are tied directly to

complexity, use as few as possible

 Key formulation trick – Big-M constraints
 A binary decision variable and large constant can be

used to selectively relax a set of constraints

 Expensive solvers can sometimes do this without
numerical issues
 CPLEX logical indicator constraints

MIXED INTEGER LINEAR PROGRAMMING

0 0
0

0 1
Ax B b

Ax B Mb
Mb b

44

 Representing obstacles in MILP

45

MIXED INTEGER LINEAR PROGRAMMING

Obstacle

3a

2a

1a

4a

 Representing Obstacles in MILP
 At each timestep, for each obstacle

 Each edge requires a single constraint

 oi,e is a binary decision variable
 0 – constraint is inactive
 1 – constraint is active

 M is a large number that relaxes the constraint when not
active

 At each time step, for each obstacle
 Must be satisfying at least one obstacle edge constraints

46

MIXED INTEGER LINEAR PROGRAMMING

 , , ,1 0i e t i e i ea x b M o

,
1

1
eN

i e
e

o

 Minimum time formulation
 Dynamics apply when not at end point

 Vehicle does not move once end point is reached

 This requires the end point to be consistent with dynamics
 For the 4 state linear motion model, ensure end point

velocities are 0.

 Formulate big-M constraints to use dynamics while
moving and fixed end point once arrived

47

MIXED INTEGER LINEAR PROGRAMMING

1 0t t tAx Bu x

1 0t tx x

 Minimum Time Formulation
To relax equality constraints, must convert to pairs of

inequality constraints
For dynamics,

For end point,

And ensuring we don’t leave the end point once arrived

48

MIXED INTEGER LINEAR PROGRAMMING

1

1

0
0

t t t t

t t t t

Ax Bu x Md
Ax Bu x Md

1

1

(1) 0
(1) 0

t t t

t t t

x x M d
x x M d

1 0t td d

Ft Fx x

0
0

1
F

t

t

d

d

 Minimizing the magnitude of inputs
 Define new variable

 Add two sets of constraints

 Minimize um at each timestep

 Works for LP, NLP as well
 um referred to as a slack variable

49

MIXED INTEGER LINEAR PROGRAMMING

u

| |u
mu

mu u
mu u

 Enumeration – Tree Search, Dynamic Programming
etc.

 Guaranteed to find a feasible solution (only consider
integers, can check feasibility (P))

 But, guaranteed exponential growth in computation time

SOLUTION METHODS FOR INTEGER PROGRAMS

x1=0

X2=0 X2=2X2=1

x1=1 x1=2

X2=0 X2=2X2=1X2=0 X2=2X2=1

50

SOLUTION METHODS FOR INTEGER PROGRAMS

 How about solving LP Relaxation followed by
rounding?

-cT

x1

x2

LP Solution

Integer Solution

51

INTEGER PROGRAMS

 LP solution provides lower bound on IP
 But, rounding can be arbitrarily far away from

integer solution

-cT

x1

x2

52

COMBINED APPROACH TO INTEGER PROGRAMMING

-cT

x1

x2

-cT

x1

x2

 Why not combine both approaches!
 Solve LP Relaxation to get fractional solutions
 Create two sub-branches by adding constraints

x2≤1

x2≥2

53

 Known as Branch and Bound
 Branch as above
 LP give lower bound, feasible solutions give upper bound

SOLUTION METHODS FOR INTEGER PROGRAMS

LP

J* = J0

LP + x2≥2

J* = J2

LP + x2≤1

J* = J1

x1=4.3, x2= 1.9

LP + x1≤3 + x2≤1

J* = J3

LP + x1≥4 + x2 ≤1

J* = J4

LP + x1≥5 + x2≥2

J* = J6

LP + x1≤4 + x2≥2

J* = J5

x1= 4.2, x2= 2 x1= 3.6, x2= 1

True optimumWorse than J5 Infeasible Infeasible

BRANCH AND BOUND METHOD

Branch and Bound Algorithm
1.Solve LP relaxation for lower bound on cost for

current branch
 If solution exceeds upper bound, branch is

terminated
 If solution is integer, replace upper bound on cost if

lower
2.Create two branched problems by adding

constraints to original problem
Select integer variable with fractional LP solution
Add integer constraints to the original LP

3.Repeat until no branches remain, return optimal
solution.

55

 Order matters
 All solutions cause branching to stop
 Each feasible solution is an upper bound on optimal

cost, allowing elimination of nodes

56

INTEGER PROGRAMS

-cT

x1

x2

Branch x2Branch x1
then x2

Branch x1

ADDITIONAL REFINEMENTS –CUTTING PLANES

 Idea stems from adding additional constraints to
LP to improve tightness of relaxation

 Combine constraints to eliminate non-integer
solutions

x1

x2

Added Cut

 All feasible
integer
solutions
remain feasible

 Current LP
solution is not
feasible

57

 Optimal Planning

 Motion Planning with Nonlinear Programming

 Receding Horizon Planning

 Motion Planning with Mixed Integer Linear
Programming

58

OUTLINE

Mixed Integer Linear Program (MILP)
 (NP-hard) computational complexity

 Exponential growth in complexity
 However, many problems can be solved

surprisingly quickly

MINLP, MILQP etc.

OPTIMAL PLANNING

min

s.t.

T

x X

eq eq

f x

Ax b
A b

where i rn nX

59

 The core issue with NLPs are
 Smooth obstacle definitions
 Local minima
 Difficulty evaluating alternative routes around

obstacles
 Continuous deformation can’t jump over holes

 Alternative is to pose as MILP
 Integer variable represents whether or not a constraint is

active
 Guaranteed to find optimal solution
 Exponential complexity growth in number of binary

decision variables
 Limited to linear dynamics

60

MIXED INTEGER LINEAR PROGRAMMING

MIXED INTEGER LINEAR PROGRAMS

 Solved via branch and bound
 Same concept as A* search

 If lower bound on cost exceeds current best solution, no need to
evaluate this branch of solutions further

 The faster a good upper bound on the optimal cost is found, and the
tighter the lower bounds on costs-to-go, the faster a solution can be
proven optimal

 Optimization Packages
 ILOG CPLEX: Gold standard of industry, expensive, but

free for academics!

 LU-solve: free, open source, easy to use, callable from
Matlab, included in code library with a dll for Win 64. 61

 Path Planning example
 Note: It is difficult to devise a real world robotics

problem that is a pure Linear Program, but with
integer variables, things get more interesting!

 Linear dynamics

62

MIXED INTEGER LINEAR PROGRAM

1

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

t t t

dt
dt

x x u
dt

dt

1t t tx Ax Bu

 Path Planning example
 Initial and final positions

 Minimum and maximum inputs

 Minimum and maximum positions

 Minimum and maximum velocities

 Obstacles

63

MIXED INTEGER LINEAR PROGRAM

0 0x p
Ft Fx p

tu u u

[2,4],tx V X
Fp[1,3],tx X

 , , ,1 0i e t i e i ea x b M o ,
1

1
eN

i e
e

o

 Path Planning example
 Optimization variables

 Costs
 Minimize control magnitudes (um)

 Example is fixed time, can add in minimum time as
well
 Append T binary decision variables to indicate when end

goal is reached
 Replace dynamics equality constraints with four sets of

inequalities
64

MIXED INTEGER LINEAR PROGRAM

 Tf 0 0 -1 0

0 0 0 1,1 1, 2,1 2, ,[]
e e e

m m
T T T N N M NX x x u u u u o o o o o

 Results
 5 Obstacles
 20 time steps
 2.5 minutes to

compute solution

65

MIXED INTEGER LINEAR PROGRAM

 Results
 Best known solution

after 15 seconds

 After 10 seconds, a
solution only 2.5%
worse is found

 Remainder of time
spend ensuring this is
truly the optimal
solution!

66

MIXED INTEGER LINEAR PROGRAMMING

t=15s

t=10s

 Run time – 2 obstacles, 100 runs
 88 under a second, 96 under 2 seconds, 1 took 36

seconds.

67

MIXED INTEGER LINEAR PROGRAMMING

