

ME 597: AUTONOMOUS MOBILE ROBOTICS SECTION 9 – QUADROTORS

Prof. Steven Waslander

APPLICATIONS

How Do Quadrotors Work?

• Two pairs of counter-rotating blades allow for fixed pitch rotors and independent actuation of roll, pitch, yaw and altitude

WHY QUADROTORS

- Easy to build
- Easy to maintain
- Can hover in place
- Simple dynamics
- Relatively safe

STARMAC PROJECT GOALS

STARMAC TEAM 03-08

Prof. Claire Tomlin

Jung Soon Jang

Dev Rajnarayan

Gabe Hoffmann, Steven Waslander, Mike Vitus, Haomiao Huang, Vijay Pradeep

Jeremy Gillula

WAVELAB GOALS

- Robust, precision control
 - GPS/IMU in winds
 - Vision to support/replace GPS
- Onboard mapping
 - Lidar based occupancy grid mapping
 - Vision (mono/stereo/multi-cam)
- Onboard planning
 - Real time 3D planning
 - Known environments PRM/Motion primitives
 - Unknown environments combine with mapping

WAVELAB QUADROTOR TEAM 09-14

Ryan Gariepy

Carlos Wang

Abdel El Bably

Prasenjit Mukherjee

Peiyi Chen

Nima Mohajerin

Arun Das

Adeel Akhtar

Me

Derek Chow

Yan Ma

Mike Tribou

Kevin Ling

OUTLINE

- Introduction
- Platform Development
- Vehicle modeling
- Estimation and Control
- Mapping
- Motion Planning
 - Tunnel-MILP
 - PRM/NLP
 - Reachable Sets

• Multi-Vehicle Coordination

QUADROTOR HISTORY

- Historical attempts
 - Earliest attempts failed to leave ground effect, too complex for pilots
 - Later attempt worked well but interest waned with success of helicopter

De Bothezat (1922)

Convertawings Model "A" (1956)

Curtiss-Wright X-19A (1960)

COMMERCIAL QUADROTORS

- RC-Toys Draganflyer (2002)
 - RC vehicle with stabilization

• Full GPS waypoint tracking

- Ascending Technology Hummingbird (2007)
- Aeryon Scout (2009)

RC QUADROTORS

- Other research projects
 - X-4 Mark II, Robert Pounds, ANU, Australia
 - UAV SWARM, Jonathan How, MIT, USA
 - Nick Roy, MIT, USA
 - Javiator, Christoph Kirsch, Austria
 - Has now exploded to 100s of labs

X-4 Mark II, 2005

FIRST DESIGN (2003)

SECOND DESIGN (2004-2006) - VEHICLE

SECOND DESIGN (2004-2006) - SYSTEM

Third Design (2006 - 2009) - Vehicle

SENSORS

IMU

- Microstrain 3DM-GX1
- Attitude, attitude rate, acceleration @ 76 Hz

o GPS

- Novatel Superstar II
- Carrier Phase Position
 & velocity @10 Hz

SODAR

- Senscomp Mini AE
- Up to 50 Hz update
- Up to 40 ft range

OUTLINE

- Introduction
- Platform Development
- Vehicle modeling
 - Dynamics of vehicle
 - Aerodynamic Effects
 - Effect of Wind
- Estimation and Control
- Mapping
- Motion Planning
- Multi-Vehicle Coordination

FREE BODY DIAGRAM

1. TOTAL THRUST VARIATION

• From conservation of mass, momentum and energy:

$$\dot{m} = \rho A v_i
T = \dot{m} w
T v_i = \frac{1}{2} \dot{m} w^2$$

Leishman, 2000

Solving for induced velocity

$$w = 2v_i \quad v_i = \sqrt{\frac{T}{2\rho A}}$$

Ideal power required at hover

$$P = Tv_i = \frac{T^{3/2}}{\sqrt{2\rho A}}$$

VERTICAL MOTION

- Thrust can be modeled in three separate regions
 - Assumptions of momentum theory not always valid
 - Normal working state (ascent): $v_z > 0$
 - Momentum theory model valid
 - More power required for hover thrust

 $v_z > 0$

VERTICAL MOTION

- Thrust can be modeled in three separate regions
 - Assumptions of momentum theory not always valid
 - Normal working state (ascent): $v_z > 0$
 - Momentum theory model valid
 - More power required for hover thrust
 - Vortex ring state: $-2v_h < v_z < 0$
 - Transition state, unsteady flow
 - Empirical models for average thrust

Vortex Ring State (Brown et al. 2002)

VERTICAL MOTION

- Thrust can be modeled in three separate regions
 - Assumptions of momentum theory not always valid
 - Normal working state (ascent): $v_z > 0$
 - Momentum theory model valid
 - More power required for hover thrust
 - Vortex ring state: $-2v_h < v_z < 0$
 - Transition state, unsteady flow
 - Empirical models for average thrust
 - Windmill brake state: $v_z < -2v_h$
 - Momentum theory model valid
 - Less power required for hover thrust

TEST STAND MEASUREMENTS

- Motor thrust measurements performed with load cell,
- Freestream velocity generated with cooling fan
- Wind speed measured with digital anemometer
- Convenient Labview interface for automated testing

EXPERIMENTAL RESULTS: VERTICAL MOTION

- Experiment consistent with predicted variation in thrust
- Noisy measurements in vortex ring state region
 - Refinement of apparatus and model may yield better agreement

TRANSLATIONAL MOTION

 Include non-zero freestream velocity and rotor angle of – attack

 v_{∞}

 α

ANGLE OF ATTACK IN FLIGHT

EFFECT OF ANGLE OF ATTACK IN FLIGHT

- 1. Fly at constant velocity.
- 2. Command large change in angle of attack
- 3. Results in significant "pop-up" in altitude

2. Blade Flapping

- Asymmetry of airflow relative to blade
- Produces asymmetric thrust
- Results in blade flapping
 - Lateral (roll) moment from force imbalance
 - Longitudinal (pitch) moment from deflection of rotor plane

BLADE FLAPPING CONT'D

- Flexible blades with fixed hub modeled as hinged blades with a hinge offset and angular spring
 - Maximum deflection near 90°, affected by hinge offset, spring constant
- Thrust acts perpendicular to rotor plane
 - If CG is not in line with rotor plane, a moment results

EFFECT ON QUADROTORS

For quadrotors, lateral moments cancel!

Longitudinal moments cancel if CG is aligned with rotor plane

EXPERIMENT: BLADE FLAPPING

Flapping Blade Demonstration

Hybrid Systems Lab Stanford University

EXPERIMENTAL RESULTS: BLADE FLAPPING

- Measurement of lateral thrust in varying lateral wind conditions matches prediction
 - Blade spring constant measured
 - Hinge offset estimated from deflection profile

EFFECT OF BLADE FLAPPING IN FLIGHT

1. Large constant pitch angle commanded

2. As forward velocity increases, achieved pitch decreases

3. AIRFLOW DISRUPTIONS

AIRFLOW DISRUPTIONS

Yaw control accuracy with and without rotor shrouds

OUTLINE

- Introduction
- Platform Development
- Vehicle modeling
- Estimation and Control
 - Structure
 - Attitude Control
 - Altitude Control
 - Position Control
 - Trajectory Tracking
 - Wind Disturbance Rejection
- Mapping
- Motion Planning
- Multi-Vehicle Coordination

ESTIMATION AND CONTROL STRUCTURE GPS

ESTIMATION & MEASUREMENT MODEL

- Altitude filter
 - Outlier rejection
 - Kinematic Kalman Filter

- Standard EKF used for Navigation Filter
 - GPS inertial position, velocity
 - Sodar, Barometer inertial altitude
 - Gyros body angular rates + biases
 - Magnetometers body vector + current calibration
 - Accelerometers body accelerations gravity
 - Ignored during GPS measurement updates

QUADROTOR ATTITUDE CONTROL

mg

- Angular Accel.
 Feedback
 (specific thrust)
- Command Tracking
- Frame Stiffness
- Tip Vortex Impingement

TRACKING REFERENCE COMMANDS

Root mean square error of 0.65°

QUADROTOR ALTITUDE CONTROL

Key Developments

- Acceleration
 Feedback
 (specific thrust)
- Tip Vortex Impingement
- Tilt Compensation
- Sensor Selection

TRACKING REFERENCE COMMANDS

Root mean square error of 0.02 m in hover

DISTURBANCE REJECTION - INDOOR

DISTURBANCE REJECTION - OUTDOOR

LINE TRACKING

• Follows *planned path*, no corner cutting

• PID Cross-Track Position Tracking

• PI Along-Track Velocity Tracking

TRANSFORM COMMANDS TO BODY FRAME

QUADROTOR POSITION CONTROL

QUADROTOR POSITION CONTROL

AERYON SCOUT WITH PID POSITION CONTROL

AERYON SCOUT WITH PID POSITION CONTROL

AR PARROT DRONE RESULTS

TIME-OPTIMAL FEASIBLE TRAJECTORY

- 1. Find maximum speed for lateral acceleration constraint
- 2. Enforce reverse acceleration constraint
- 3. Enforce forward acceleration constraint
- 4. Compute required lateral acceleration

FEASIBLE TRAJECTORY GENERATION

• Speed limit for *cross-track* acceleration constraint

$$a_{ct,i} = \frac{v_i^2}{r_i}$$

$$\Rightarrow v_{i,allow} \leq \sqrt{a_{max}r_i}$$

• Approximate radius of curvature by discretization

• Check for divide by zero (infinite radius of curvature)

LONGITUDINAL ACCELERATION CONSTRAINT

VISIBILITY GRAPH EXAMPLE

FAST MARCHING EXAMPLE

WIND MODELING

• Boundary layer effects for nominal wind speed

$$v_w(z) = \frac{1}{k} v_w^* \ln \left(\frac{z}{z_0}\right)$$

- $v_w(z) = \frac{1}{k} v_w^* \ln \left(\frac{z}{z_0} \right)$ o Dryden wind gusts, linear combination of sinusoids
 - 0.1-1.5 rad/s $v_w(t) = v_w^0 + \sum_{i=1}^{n} a_i \sin(\Omega_i t + \gamma_i)$

Wind From Dryden Gust Model vs Time

$$v_{w}^{0} = 0$$

COMPLETE FORCE MODELS

Thrust perpendicular to vehicle body plane from each rotor

$$T_{i} = C_{\infty}(v_{\infty}, \alpha, v_{i})T_{h}$$
$$= C_{\infty}(v_{\infty}, \Theta, V_{i})C_{h}V_{i}^{2}$$

• Drag parallel to vehicle body plane

$$D = C_D v_{\infty} + C_{bf} v_{\infty} \cos \alpha$$

- Simple linear drag and blade flapping model reasonably accurate
- Moments are modeled similarly, not used in wind estimation

WIND ESTIMATOR

• Key idea: Since accelerometer measurements are fast relative to wind dynamics, use previous wind estimate in calculation of thrust

$$a_{B} = \sum_{i=1}^{4} \left(-C_{\infty}(v_{I} - \tilde{v}_{w}, \Theta, V_{i})C_{h}V_{i}^{2}\hat{z} \right) + R_{I}^{B} \left(C_{bf}(v_{I} - v_{w})\cos\alpha\hat{e}_{h} + C_{D}(v_{I} - v_{w})\hat{e}_{\infty} \right)$$

 Solve for wind velocity, measurement model inversion

$$\hat{\mathbf{v}}_{w} = v_{I} - \frac{R_{B}^{I}}{C_{bf} \cos \alpha \hat{\mathbf{e}}_{h} + C_{D} \hat{\mathbf{e}}_{\infty}} \left(\sum_{i=1}^{4} \left(C_{\infty} (v_{I} - \tilde{\mathbf{v}}_{w}, \Theta, V_{i}) C_{h} V_{i}^{2} \hat{\mathbf{z}} \right) + m a_{B} \right)$$

WIND COMPENSATOR

- North East Position Control
- Reject accelerations caused by wind disturbance as they happen
- Rely on full thrust model to determine total thrust produced

$$T_t = \sum_{i=1}^4 T_i$$

• For small angle commands, simplify to linear offset to roll and pitch request

$$T_{t} \begin{bmatrix} \sin \partial \theta \\ \sin \partial \phi \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} R_{I}^{B} C_{D} v_{w} \qquad \longrightarrow \qquad \partial \theta \approx \frac{C_{D} v_{w,x}}{T_{t}}$$

$$\partial \phi \approx \frac{-C_{D} v_{w,y}}{T_{t}}$$

HOVER CONTROL SIMULATION RESULTS

HOVER CONTROL SIMULATION RESULTS

PID,DD + WC

• Improvement from $\pm 0.4m$ to $\pm 0.15m$ to $\pm 0.1m$ error for the same wind

CIRCULAR TRAJECTORY

Model-aided visual-inertial fusion with wind effects

Process Equation

$$\begin{bmatrix} \mathbf{E} & \mathbf{p} \\ \mathbf{v} & \mathbf{v} \\ \dot{\lambda} \\ \dot{\boldsymbol{\Theta}} & = \begin{bmatrix} \mathbf{E} & \mathbf{R} & \mathbf{E} & \mathbf{v} \\ \mathbf{E} & \mathbf{R} & \mathbf{g} + (\mathbf{E} & \mathbf{a}_z - \boldsymbol{\beta}_{az}) \mathbf{e}_3 - \overline{D}_L (\mathbf{E} & \mathbf{v} - \mathbf{E} & \mathbf{R}^{TE} \mathbf{v}_w) + \mathbf{\eta}_v \\ \eta_{\lambda} \\ \Xi & \boldsymbol{\Theta} \\ \boldsymbol{\beta}_a \\ \vdots \\ \boldsymbol{\beta}_g \\ \boldsymbol{\beta}_g \end{bmatrix} = \begin{bmatrix} \mathbf{E} & \mathbf{R} & \mathbf{E} & \mathbf{v} \\ \mathbf{E} & \mathbf{R} & \mathbf{E} & \mathbf{v} \\ \mathbf{E} & \mathbf{v} \\ \mathbf{E} & \mathbf{v} \end{bmatrix}$$

Accelerometer Measurement

$$\mathbf{h}_{i} = -k_{1} \mathbf{Y} ({}^{B} \mathbf{v} - {}^{B}_{E} \mathbf{R}^{T} {}^{E} \mathbf{v}_{w}) + \mathbf{Y} \mathbf{\beta}_{a} + \mathbf{Y} \mathbf{\eta}_{a}$$

Vision Measurement

$$\mathbf{h}_{vp} = \lambda^e \mathbf{p} + \mathbf{\eta}_p$$
$$\mathbf{h}_{vo} = \mathbf{\Theta} + \mathbf{\eta}_o$$

Key Questions

- Which states are observable?
- Conditions on observability?

RESULTS

- Non-linear analytical observability analysis reveals that all states except for body frame z component of wind velocity are observable (in a locally-weak observability sense)
- Observability depend on the quadrotor maintaining non-zero accelerations in either body frame x or y directions
- Unobservable component of wind can be removed by assuming wind velocity is smoothly varying in inertial frame.

EXPERIMENTAL VALIDATION

Simulated VSLAM Position

Scale:1/5

Noise: 1m standard deviation

Simulated VSLAM orientation

Noise: 2 degrees standard

deviation

EXPERIMENTAL RESULTS

EXPERIMENTAL RESULTS

Scale Estimate

Wind Velocity Estimate

EXPERIMENTAL RESULTS

OUTLINE

- Introduction
- Platform Development
- Vehicle modeling
- Estimation and Control
- Mapping
- Motion Planning
- Multi-Vehicle Coordination

2D-Laser-Based Mapping on Quadrotors

- Multi-camera parallel tracking and mapping (MCPTAM) (McGill – Harmat, Sharf)
 - Built on PTAM base
 - Omni-directional camera model
 - Tracking onboard X8 Atom Board
 - Mapping on the ground

- Built on EKF or bundle adjustment
- Inverse depth, spherical parameterizations for seamless initialization
- Overlap not necessary for global scale recovery
- No motion models assumed (relative motion)
- Available at <u>https://github.com/aharmat/mcptam</u>

Initialization

- Without overlap, solve map up to scale
- With overlap, solve map with scale
- Store keyframe cluster in map

Tracking

- Fixed map = fast computation
- Strong-ish feature correspondence from PTAM (windowed, tracked features)

Mapping

- Keyframe selected based on distance
- First keyframe a feature is observed in defines feature coordinate frame
- Backend optimization using g2o resolves scale

- Degeneracy analysis for two and three cameras
 - Identify conditions for which measurement Jacobian is degenerate
 - Can be reduced to a 6X6 matrix rank check
- Examples of degenerate motions that could occur on UAVs:

MULTI-CAMERA LOCALIZATION (AND MAPPING)

MCPTAM IN FLIGHT

• Closed loop outdoor control using MCPTAM on Draganflyer X8

OUTLINE

- Introduction
- Platform Development
- Vehicle modeling
- Estimation and Control
- Mapping
- Motion Planning
 - Tunnel-MILP
 - PRM/NLP
 - Reachable Sets

• Multi-Vehicle Coordination

TUNNEL-MILP ALGORITHM

- 1) Pre-path determination ignoring the dynamics of the vehicle.
- 2) Region decomposition into convex polygons and identify tunnel.
- 3) Solve the dynamically feasible optimal control problem as a MILP through the tunnel.

Pre-Path Generation

Region Decomposition

MILP Feasible Path Generation

1) Pre-Path Generation: Visibility Graphs

Standard method

- Fully connect all obstacle vertices, start and finish
- Discard any paths that traverse obstacles
- A* search for shortest path

• Finds shortest path

- Relatively quick
- Necessarily close to obstacles
- Kinks in path challenging for vehicles

1) Pre-Path Generation: Fast Marching

- Wave propagated from target
 - Speed of propagation varied based on proximity to obstacles
- Path determined by gradient descent of resulting potential field
- Smooth path results
 - No local minima
 - Tunable obstacle repulsion
 - Still not necessarily feasible

2) REGION DECOMPOSITION: TRAPEZOIDAL

- Vertical cuts applied to each obstacle vertex
- Sequence of polytopes containing pre-path then identified

Trapezoidal

2) REGION DECOMPOSITION: DELAUNAY

- Delaunay triangulation
 - Constrained to form triangles outside of obstacles
- Adjacent triangles along path combined if possible
 - Create larger convex regions

Delaunay

2) REGION DECOMPOSITION: GREEDY CUT

- Optimal Convex Decomposition for polytopes with holes is NP-Hard
- Each non-convex vertex requires at most one cut to eliminate it
- Any single cut can eliminate at most two non-convex vertices
- Greedy Cut Algorithm
 - Matching cuts
 - Vertex cuts

Greedy Cut

COMPARISON OF RESULTING TUNNELS

Delaunay

Greedy Cut

Trapezoidal

	Avg. Number of Regions	
	4 Obstacles	8 Obstacles
Greedy Cut	4.4	6.0
Delaunay	6.3	7.5
Trapezoidal	10.5	15.9

3) MILP FORMULATION

• Require polygons to be traversed in order

CPLEX MILP Tricks

- Indicator constraints (logical)
- Feasible solution first

RESULTS: EXAMPLE SOLUTIONS

RESULTS: EXAMPLE SOLUTIONS

# Obstacles	% Avg. Timestep	% Avg. Input Cost
	Increase	Increase
3	7.78	14.94
4	3.69	13.96
5	2.01	8.06
6	1.77	3.69
7	2.55	9.23
8	1.69	6.61
9	1.94	4.94
20	0.73	3.82

RESULTS: COMPARISON OF COMPUTATION

RESULTS: COMPUTATION TIMES

- Maximum 600 seconds of computation allowed
 - Yes we ran many computers for days

TUNNEL-MILP ON STARMAC

TUNNEL-MILP ON STARMAC

- Outdoor flight test results
 - 10-15 mph winds
 - Planning achieved in 7.5 seconds

Flight Plan — Hover — Flight Path —

RANDOMIZED EXPLORATION OPTIMAL TRAJECTORY PLANNING

2 3

Generate PRM

Query PRM and Improve Path

Find Dynamically Feasible Trajectory

PRM PATH IMPROVEMENT

- Origin A, Destination B
- Attach A and B to roadmap (same method)
- Use discrete planning techniques (Dijkstra, A*, etc) to find shortest path from A to B
- Refinement: Check for better lines of sight along the original shortest path

STEP 3: FORMULATE AND SOLVE NLP

- Path from PRM query is:
- Not dynamically feasible
- Not optimal
- <u>But</u>, provides good initial guess for NLP solver

STEP 3: NLP FORMULATION

minimize f(x)

Control cost

Collision constraints

subj. to:

$$c(x) \leq 0$$

$$h(x) = 0$$

Dynamics

- State consistency
- Goal

Simple bounds on state and control variables

 $x_{\min} \le x \le x_{\max}$

MULTIPLE SHOOTING FORMULATION

COLLISION CONSTRAINT

 Proximity Query Package (PQP) used to check distance from line segments connecting initial and final points to obstacles

• PQP returns 0 for collisions

- No depth-of-penetration info
- Use approximate heuristic:
- Take distance from midpoint of colliding line segment to the PRM path
- Issues
 - Discontinuity of c(x)
 - Pathological cases

99

SCENARIO

- Building
 - 20 m x 40 m x 10 m
 - 2,402 triangles
 - 2 floors
 - doors, windows
 - 12 rooms, 2 corridors

- Quadrotor
 - ~ 80 cm wide
 - 1.9 kg

EXAMPLE PRM IN 3D

HEURISTIC RE-SAMPLING ALGORITHM

 Maximize heuristic function using iterative greedy approach

$$\frac{1}{N} \sum_{i=0}^{N} \min(\min_{dist(node\ i, 0), d_{max}})$$

Step 1:

HEURISTIC RE-SAMPLING ALGORITHM

Step 2:

• Repeat steps 1 and 2 until improvements in heuristic value is less than ε for several iterations

HEURISTIC RE-SAMPLING EXAMPLE

• Runtime = 0.68 seconds, total iterations = 4

DEFINING MOTION PRIMITIVES

- Find A and C such that triangle ABC is as large as possible and obstacle free
- \circ Worst case scenario: AB = BC = 0
 - Use trivial solution
- Straight segments are collision free (PRM)
- Goal: contain corner motion inside triangle ABC•

$$\hat{v}_i \cdot \widehat{AB} = \hat{v}_f \cdot \widehat{BC} = 1$$

2.
$$\frac{\|v_f\|_2}{\|v_i\|_2} = \frac{\|BC\|_2}{\|AB\|_2}$$

CORNER MOTION: FEASIBLE AND BOUNDED

- There exists an unique acceleration such that
 - Position: $A \rightarrow C$
 - Velocity: $v_i \rightarrow v_f$

$$\Delta p_x = \frac{1}{2} \left(v_f \cos \sigma + v_i \cos \zeta \right) t = \frac{K}{a}$$

$$\Delta p_y = \frac{1}{2} (v_f \sin \sigma + v_i \sin \zeta) t = 0$$

- Velocity direction dictates gradient of the path
- Direction of velocity
 - Region $2 \rightarrow \text{Region } 3$

SIMULATION EXAMPLE

MOTION PLANNING: QUADROTOR BACK-FLIP

- Divide flip into three modes
- Difficult problem:
 - Hitting some target sets while avoiding some unsafe sets
- Solution:
 - Analyze rotational dynamics and vertical dynamics separately

BACK-FLIP: METHOD (1)

- Identify *target* region in rotational state space for each mode
- Use reachable sets to calculate *capture basin* for each target
 - Dynamic game formulation accounts for worstcase disturbances
- Verify that target of each mode is contained by capture basin of next mode

BACK-FLIP: METHOD (2)

- Identify *unsafe* region in vertical state space for final mode
- Use reachable sets to propagate *unsafe set* for each mode
 - Dynamic game formulation accounts for worst-case disturbances
- Verify that control keeps state out of unsafe set

BACK-FLIP: RESULTS

BACK-FLIP: RESULTS

BACK-FLIP: RESULTS

OUTLINE

- Introduction
- Platform Development
- Vehicle modeling
- Estimation and Control
- Mapping
- Motion Planning

- Multi-Vehicle Coordination
 - Collision Avoidance
 - Information Seeking Control

DECENTRALIZED COLLISION AVOIDANCE

Maximum communication range

Vehicle neighborhood

Minimum separation constraints

• Only interconnection between vehicles

• Desired trajectory

• Based on local information

• Penalty method for enforcing interconnected constraints

Gradually increase cost of violating constraints

No initial feasible solution required

System Cost Metric

- Efficient solution
 - Comparison: marginal cost

$$J_{eff} = \sum_{j \in \mathcal{J}} J_j$$

- Egalitarian solution
 - Comparison: cost

$$J_{eg} = \max_{j \in \mathcal{J}} (J_j - d_j)$$

- Nash Bargaining solution
 - Comparison: percent change in marginal cost

$$J_{NBS} = -\prod_{j \in \mathcal{J}} (d_j - J_j)$$

DECENTRALIZED ALGORITHM

Proposition [Convergence to Nash Bargaining solution]:

The penalty method formulation of the decentralized optimization problem converges to a solution that satisfies the necessary conditions for optimality of the Nash Bargaining solution to the centralized optimization problem.

117

QUADROTOR SCENARIO

- Onboard computation
 - 2 m separation
 - Planning at 0.1 Hz onboard for 10 step horizon
- Implementation requirements
 - Finalize trajectory tracking control
 - Test in-flight message passing

STARMAC FLIGHT TESTS

Information-Seeking Problem Framework

Controller goal is to minimize the uncertainty of $p(\theta)$ There may be *no reason* to move towards the target

Modeling Uncertainty to Increase Knowledge

Target State:
$$\theta$$
 Vehicle States: \mathbf{x}_t Control Inputs: \mathbf{u}_t Motion Model: $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t)$ Sensor model: $p(\mathbf{z}_{t+1} | \theta; \mathbf{x}_{t+1})$

Use Bayes' Rule to update the target state model,

$$p(\theta|\mathbf{z}_{t+1}; \mathbf{x}_{t+1}) = \frac{p(\theta)p(\mathbf{z}_{t+1}|\theta; \mathbf{x}_{t+1})}{p(\mathbf{z}_{t+1}; \mathbf{x}_{t+1})}$$

Minimize the expected future uncertainty,

$$H(\theta|\mathbf{z}_{t+1}) = H(\theta) - I(\theta; \mathbf{z}_{t+1})$$

MAXIMIZING INFORMATION

DISTRIBUTED OPTIMIZATION PROGRAM

minimize
$$-I^{(i)}(\mathbf{x}_{t}^{(i)}, \mathbf{u}_{t}^{(i)}, \theta_{t}^{(i)} | \mathbf{x}_{t}^{(-i)}, \mathbf{u}_{t}^{(-i)})$$
 $\mathbf{u}_{t}^{(i)} \in U^{(i)}$
 $+\frac{1}{\beta}P(\mathbf{x}_{t}^{(i)}, \mathbf{u}_{t}^{(i)} | \mathbf{x}_{t}^{(-i)}, \mathbf{u}_{t}^{(-i)})$

subject to
$$\mathbf{x}_{t+1}^{(i)} = f_t^{(i)}(\mathbf{x}_t^{(i)}, \mathbf{u}_t^{(i)})$$

 $\mathbf{z}_{t+1}^{(i)} = h_t^{(i)}(\mathbf{x}_{t+1}^{(i)}, \theta_t^{(i)}, \eta_t^{(i)})$

123

RANGE-ONLY EXAMPLE

Measure the distance to the target

BEACON FIELD EXAMPLE

Measure the field line orientation

BEACON SEARCH FIELD EXAMPLE

UAV/UGV COORDINATION

- Autonomous coordinated landing
 - Use precision motion of ground vehicle, manoeuvrability of aerial vehicle
 - Design landing controller
 - Low computation requirements

CONTROL ARCHITECTURE

DELAY MARGIN

- Using results in [1], we can numerically determine delay margin
 - Joint controller designed to give closed loop poles at $\{-1,-2,-3,-4\}$ yields delay margin $\tau = 0.52327$ seconds.
 - Joint controller designed to give closed loop poles at $\{-0.1, -0.2, -0.3, -0.4\}$ yields delay margin $\tau = 6.1237$ seconds.
- As CL system becomes more sluggish, delay margin increases
 - Intuitively satisfying

[1] K. Gu, V. L. Kharitonov, and J. Chen, Stability of Time-Delay Systems. New York: Birkhauser Boston, 2003.

SIMULATION VERIFICATION

FLIGHT DEMONSTRATION

- Three phase process: rendezvous, tracking then descent
- Focus on careful selection of which sensors to rely on
 - GPS, IMU for rendezvous 5-10 m positioning error
 - Vision only for acquisition, descent 10 cm relative error without wind.

2DOF RELATIVE POSE ESTIMATION

- Based on April Tags code, simplified and sped up
 - Only need x, y, vx, vy estimates
 - Windowed tracking based on constant velocity model
 - Canny edges simplify image processing
 - Lots of illumination/reflection issues
 - Felt target, mimimum exposure time (low blur)
 - Attained 25 Hz update on Intel Atom board

2DOF TRACKING PERFORMANCE

- Tracking performance compared to indoor positioning data very reassuring
 - Delay in velocity measurement visible
 - Low noise overall, as long as target tracking is maintained

CONTROLLER DESIGNS

• Rendezvous in GPS Inertial Frame, cross track/along track

$$u_{at} = K_{at,d}\dot{e}_{at} + K_{at,i}\int\dot{e}_{at}dt$$

$$u_{ct} = K_{ct,p}e_{ct} + K_{ct,d}\dot{e}_{ct} + K_{ct,i}\int e_{ct}dt$$

• Acquisition in the same frame, but now relative pose regul $u_{E,x} = K_{E,p}e_{E,x} + K_{E,d}\dot{e}_{E,x} + K_{E,i}\int e_{E,x}dt$

$$u_{E,y} = K_{E,p}e_{E,y} + K_{E,d}\dot{e}_{E,y} + K_{E,i} \int e_{E,y}dt,$$

• Final desc $u_{r,x} = K_{r,p}e_{r,x} + K_{r,d}\dot{e}_{r,x} + K_{r,i}\int e_{r,x}dt$ igned with target $u_{r,y} = K_{r,p}e_{r,y} + K_{r,d}\dot{e}_{r,y} + K_{r,i}\int e_{r,y}dt$,

Quadrotor Landing on a Moving Vehicle Using Vision

• Indoor landing relative position results

Outdoor tracking relative position results

EXTRA SLIDES

VISUAL MOTION ESTIMATION

VISUAL MOTION ESTIMATION

- Biggest Issue is low quality of features
- Apply RANSAC to low quality feature
 - Embrace existence of outliers (reject accordingly)

Typical case – Shi & Tomasi

 $Typical\ case-SURF$

OPTICAL FLOW COMPARISON

• Before and After RANSAC

- Once a consistent set of measurements are found
 - EKF to estimate velocity and position, heading
 - Control accordingly

RESULTS - ESTIMATION

(b) Y position over time

Results – Control

PARROT DRONE

