ME 597: AUTONOMOUS MOBILE ROBOTICS
SECTION 8 — PLANNING III

Prof. Steven Waslander

COMPONENTS

Mission
Mapping

Mission
Planning

Mission Autonomy

Path
Planning

Mapping

Environmental Autonomy

Control

Vehicle Autonomy

Hardware

OUTLINE

Optimal Planning
Motion Planning with Nonlinear Programming

Receding Horizon Planning

OPTIMAL PLANNING
Non-Linear Program (NLP)

(P) Convex problems are easy to solve

Non-convex problems harder, not guaranteed to
find global optimum (local minima can occur)

min f(x)

) g(x)<0
h(x) =0

S.1.

f:R" >R
g:R" > R"
h:R" > RP

NONLINEAR PROGRAMMING

Application to mobile robotics

It 1s possible to formulate motion planning with
NLPs
However, a poorly formulated problem may not converge

Not guaranteed to find a global optimum, can be stuck in
very poor solutions

Obstacles are particularly hard

Difficult for continuous algorithms to jump from one side to
other

Initial feasible solution required, but 1impacts
solution quality

NONLINEAR PROGRAM

Path Planning Example

Dynamics — our favorite two wheeled robot

X, X, 14 U, COS x3,t_1dt
X2,t — g (Xt—1’ ut) — X2,t—1 + u1,t Sin X3,t—1dt @
B X341 | i Xgpq T u2,tdt

Initial feasible solution
Set velocity and turn rate to zero, hold initial position
Pick feasible inputs and propagate dynamics
Ensure constraints are not violated

NONLINEAR PROGRAM

Trajectory Tracking Example
Initial position

p0=[0 2 0]

Input bounds on velocity and turn rate

Desired trajectory @
.
x(t)=[t sin(0.3t)]' /V\/

o Heading not specified, so not penalized in cost

NONLINEAR PROGRAM

Trajectory Tracking Example

Costs
o Quadratic deviation from desired trajectory

!
F(x) =K 2% = If
t=1

o Quadratic penalty on inputs

F(0 = (K, Uy + Ky U,.2)
t=1

NONLINEAR PROGRAM

Implementation in Matlab
Use fmincon function

[X,FVAL,EXITFLAG,OUTPUT,LAMBDA] =
fmincon(@(x) cost(x),x0,A,B,Aeq,Beq,LB,UB,Q(x)
constraints(x), options);

Notation — defining functions for Matlab to use

o @(x) cost(x) 1s a function handle to function
cost(x), which 1s a function of x (@(xX))

NONLINEAR PROGRAM

Implementation in Matlab

Must provide two functions for this optimization
Cost function that takes current x and returns cost
T = cost(X)
Nonlinear constraints function that takes x and returns
g(x) and h(x) (g(x)<=0, h(x)=0)
[Gineq, Heq] = constraints(x)

To provide information other than x,

Use global variables (declared at top of main and
function)
global xd T dt

Pass in additional arguments to fmincon after options

NONLINEAR PROGRAM

Trajectory Tracking Example
Low weights on inputs
Tracks very well
Plans reconnect to desired trajectory nicely

Desired
Actual

20 25 30

NONLINEAR PROGRAM

Trajectory Tracking Example
Higher weights on turn rate input
Starts to trade off tracking and input
End condition has a big impact on solution

2~

15F

05+ /

-05F

NONLINEAR PROGRAM

A big benefit of the NLP formulation is the
ability to add nonlinear constraints

Obstacles

o Must be defined so as to permit smooth derivatives
o Circles work well for this
Define center x¢ and radius 7’ of circular obstacle i.

g(x)=(r') =% - [F<0
g(x)

>
i

I

ﬁV

NONLINEAR PROGRAM

Trajectory Tracking with obstacles
20 timesteps
6 obstacles 25¢

Large input bounds 2}

Initial conditions
o Stay at x,
Vg, Wy =10

Local minimum 05}

NONLINEAR PROGRAM

Trajectory Tracking with obstacles
20 timesteps
6 obstacles
Large input bounds

Issues
Discretization
Allowable 1nputs

-15F

Solutions T T R TR T A R
Smaller discretization, longer computation time

Continuous formulation
o single shooting, multiple shooting, collocation
o Also enable minimum time problem formulations

RUN TIMES

o Very approximate run times
o Based on small sample size

o Highly dependent on problem instance for obstacles

“

28 s 96 s 1 run
NLP - Obs 9s 35 s 388 s 1 run

OUTLINE

Optimal Planning

Receding Horizon Planning

RECEDING HORIZON APPROACH

Instead of solving for the entire plan, plan as you
oo along

Continuously use computation resources
Smaller optimization problem at each step

More susceptible to local minima
Escape from minima must be possible within horizon

Q..

Receding Horizon Control also called Model
Predictive Control (MPC)

RECEDING HORIZON CONTROL

Algorithm

Pick receding horizon length T

At each timestep
o Set 1nitial state to predicted state
o Perform optimization over finite horizon
o Apply control from first timestep of previous iteration
o Predict state at next time step using motion model

At x, ; apply u, At x, apply u,,;
Compute u,;, ;47 ﬂ
| 4
Move to x,

t-1 t

RECEDING HORIZON CONTROL

Pictorially
| @ %7\/\/

2) @
AVAV,

3)

RECEDING HORIZON CONTROL
o NLP Example with RHC

» Horizon T=5
o 1-2 seconds per time step

RECEDING HORIZON CONTROL

Comments

Originally developed for process control

1-2 hour updates, trying to model complex chemical
processes

Even more susceptible to local minima than full NLP

Since NLP complexity 1s roughly O(n?), this can be a
big computational savings

All DARPA Grand and Urban challenge vehicles had
some form of RHC for path planning

Similar to trajectory rollout
An optimization instead of a fixed discrete search

EXTRA SLIDES

OPTIMIZATION PROBLEM TYPES

Linear Program (LLP)

o (P) Easy, fast to solve, convex

min fTx
xeX cR"
t Ax<bh
S.t.
Aeqx: beq

Matlab command:
x = linprog(f, A, b, Aeq, beq, LB, UB, x0)

Almost no planning problems are linear (trivial
example 1n the extra slides)

SOLUTION METHODS FOR LINEAR PROGRAMS

Simplex Method

Optimum must be at the intersection of constraints

Intersections are easy to find, change 1nequalities to
equalities, add slack variables

Jump from one vertex to the next (in a smart way),
until no more improvement is possible

A
v

SOLUTION METHOD FOR LINEAR PROGRAMS

Interior Point Methods

Apply Barrier Function to each constraint and sum
Primal-Dual Formulation

Newton Step or other

At each 1teration, 5

increase slope of barriers °
Benefits

Scales better than Simplex /

Certificate of Optimality
Stop whenever

Know how close to optimal

the current solution 1s /\

Relies on duality

LINEAR PROGRAM

Path Planning example

Note: It 1s difficult to devise a real world robotics
problem that is an LLP (\

Linear dynamics -

1 dt 0 O 0 O
0 1 00 dt 0
X, = X4 T U,
0 0 1 dt 0 O
00 0 1] |0 dt

X, = AX,_, + Bu,

LINEAR PROGRAM

Path Planning example
Initial and final positions

Xo = Po Xi. = Pe

Minimum and maximum inputs

F

usu <u
Minimum and maximum positions X
Xip € X
o Define normal to line and offset
X+y<5 }

LINEAR PROGRAM

Path Planning Example

Formulation as a Linear Program
Define time horizon: T
Define time step: dt

Number of states: n
Number of inputs: m

Number of optimization variables per timestep: N=n+m
Total number of optimization variables: M = N*T

Optimization vector:

. 1T
X=[X U xtF

Extra set of inputs, constrain to zero

LINEAR PROGRAM

Path Planning example

Costs

o Must be a linear combination of
states and inputs

o Maximize x+y position (avoid origin)
o Minimize speed
o Minimize use of control inputs

X
f(x_,u)=[-11 -1 1 3 3] l;‘l
t

o For distance from desired, can use L
norm

2
d d
Ix=x" Jh=>"1x =%
=1

o Requires transformation of variables

LINEAR PROGRAM

Path Planning Example

Formulation as a Linear Program
Define cost:

F) =3 (% 10,)

Define equality constraints for dynamics
Rewrite in standard form

AX, , +Bu,—x =0
Specify for each timestep
A B -1 0 0 O 0 O

0 0 A B —-I O 0 O
Aeq = :

O 0 0 0 0 O A B

Beq=0

LINEAR PROGRAM

Path Planning Example

Other equality constraints added to the bottom of the
Aeq and Beq matrices

Xo = Po X, = Pe

Inequality constraints also compiled into a single
Aineq, Bineq matrix pair
One set of constraints to add at each time step
Bounds on inputs
Bounds on state
Region definition

LINEAR PROGRAM

Path Planning Example

The resulting Aeq sparsity pattern
o spy(A) in Matlab

O T T T T T

5¢ . .

10 F . s 0.

15+ . .

20 s e

25+ o .

30 . s 0.
351
40 =

45+

nz=118

LINEAR PROGRAM

o Path Planning Example
» Equality constraints code

length(A(1,:));
length(B(1,:));

n
m

% Dynamics

for 1=1:T-1
Aeq(n*(1-1)+1:n*1, (ntm)*(D)+1:(n+tm)*(1)+4) = —eye(n)
Aeq(n*(i1-D)+1:n*1, (ntm)*(i-D)+1:(ntm)*(i-1)+4)
Aeq(n*(1-D)+1:n*1, (ntm)*(i-D)+5:(n+m)*(1-1)+6)
beq(n*(1-1)+1:n*1) = zeros(n,l);

end

B;

% Initial and Final Conditions
Aeq(n*(T-1)+1:n*(T-1)+n,1:n) = eye(n);
Aeq(n*(T-1)+n+1:n*(T-1)+2*n+m, (n+m)*(T-1)+1: (n+m)*T) = eye(n+m);

beq(n*(T-1)+1:n*(T-1)+2*n+m,1) = [pO0"; pF"];

LINEAR PROGRAM

Path Planning Example

The resulting Aineq sparsity pattern
o spy(A) in Matlab

0f
20t v,

30+ o

40 il

50t K
60 - i

70 F

80k

0 20 40 60 80 100

LINEAR PROGRAM

o Path Planning Example

» Inequality constraint code
o Could also be included in bounds on state/inputs

g=[01; 0 -1; 1 0; -1 0O];

b =1[4.2; 0; 4.2; 0];

q = length(g(:,1));

for 1 = 1:T
Aineq(g*(1-D)+1:g*1, (n+tm)*(1-1)+1:2:(n+m)*(i1-1)+3) = g;
bineq(g*(i-1)+1:q*1) = b;

end

LINEAR PROGRAM

Path Planning Example

Once all of the setup 1s complete

[X,FVAL,EXITFLAG,OUTPUT,LAMBDA] =

Linprog(f,Aineq,bineq,Aeq,beq,LB,UB,x0,options);

Residuals:

Iter

Optimization

~N~No oah~WNEO

NOTWORkRLNRMO

e

Primal
Infeas
A*x-b

.22e+002
.67e+000
.64e-011
.56e-010
.00e-011
.16e-011
.20e-011
.72e-011

Dual
Infeas

Upper
Bounds

A" *y+z-w-F {x}+s-ub

OO0 A~DNOW

rminated.

. 74e+001
.61e-015
.44e-013
.43e-014
.75e-015
.30e-015
.54e-015
.48e-015

.02e+002
.02e+000
.00e+000
.08e-015
.00e+000
.51e-015
.51e-015
.78e-015

Duality

Gap

X" *z+s"*w

O OONONO©

.18e+004
.27e+003
.27e+001
-19e+001
.13e+000
.12e-001
.89e-003
.95e-007

P WWNNWEDN

Total
Rel
Error

.69e+000
.20e+000
.17e-001
.54e-002
.12e-002
.17e-003
-.44e-005
.72e-009

LINEAR PROGRAM

Path Planning Example

Initial location . Linear Program path planning
o=l 3 W
Final location | \\
e =[4 1] 1:'
Allowable region l1_ }
X ={(x,y)Ix,ye[0,4.2]} ”|

0 OTS 'II 1?5 é 2?5 é 3?5 ﬂle 4?5
Cost per timestep Control bounds

X
f(x ,u)=[-1 1 -1 1 3 3]{ lﬂ lul<5
t

LINEAR PROGRAM

Path Planning Example,

Linear Program path planning

More time
oT =40 |
4 L
Allowable region |
3 L

X ={(x,y)|x,y€[0,4.2]} 25}

2k

Control bounds |

U5 "

05

0k,

—

o o AA@

=

1
0 05

1
35

]
45

LINEAR PROGRAM

Path planning example
Lagrange multipliers for all inequality constraints

o All four sides of environment at each timestep

35

25}

15¢

05

0 20 40 60 80 - 100 120 140 160 130

0.045

004

0035F

003+

0025F

002F

0015+

001

0.005F

LINEAR PROGRAM

Path planning example

Lagrange multipliers for all variable bounds

o Four states and two inputs at each timestep

Lower

100

150

200

250

035

03t

025}

021

1 0415r

01

| oost

Upper

50 100 150

200

250

OPTIMIZATION PROBLEM TYPES
Quadratic Program (QP)

o (P) Quadratic cost with linear constraints O(n?)
Still fairly easy, fast to solve and convex

min X' QX
xeX cR"
t Ax<b
S.t.
Aeqx = beq

Matlab command:
X = quadprog(Q, A, b, Aeq, beq, LB, UB, x0)

Kalman filter, LQR (unconstrained)

In fact, any convex problem can be solved quickly
o Matlab toolbox: cvx

SOLUTION METHODS FOR NLPS

Sequential Quadratic Programming
Also an interior point method

At each iteration, calculate gradient and Hessian of
Lagrangian

If problem 1s a quadratic program, apply Newton step
to optimal solution

If not, use Newton step direction as a descent
direction and apply a line search

Finding Newton step involves inverse of Hessian

A

MIXED INTEGER LINEAR PROGRAMMING

Key insight into problem formulation

Since binary/integer variables are tied directly to
complexity, use as few as possible

Key formulation trick — Big-M constraints

A binary decision variable and large constant can be
used to selectively relax a set of constraints

Ax—-B>0 b=0

AXx—-B+Mb>0—
Mb>0 b=1

Expensive solvers can sometimes do this without
numerical issues

CPLEX logical indicator constraints

MIXED INTEGER LINEAR PROGRAMMING

MIXED INTEGER LINEAR PROGRAMMING

Representing Obstacles in MILP

At each timestep, for each obstacle
o Each edge requires a single constraint

3, X, —b,-M(1-0,)<0

0, ,1s a binary decision variable
0 — constraint 1s 1inactive
1 — constraint 1s active

M 1is a large number that relaxes the constraint when not
active

At each time step, for each obstacle
o Must be satisfying at least one obstacle edge constraints

Ne
Yo,.21
e=1

MIXED INTEGER LINEAR PROGRAMMING

Minimum time formulation
Dynamics apply when not at end point

AX,_,+Bu, —x =0
Vehicle does not move once end point 1s reached

Xi = X1 = 0

o This requires the end point to be consistent with dynamics

o For the 4 state linear motion model, ensure end point
velocities are O.

Formulate big-M constraints to use dynamics while
moving and fixed end point once arrived

MIXED INTEGER LINEAR PROGRAMMING

Minimum Time Formulation

o To relax equality constraints, must convert to pairs of
inequality constraints

For dynamics,
Ax_, +Bu,—x +Md, >0
Ax._, +Bu —x. —Md, <0
For end point, X; = Xg
X, —X_,+M(@0-d,)=>0
X,—X_,—M(@1-d,)<0
And ensuring we don’t leave the end point once arrived
d, =0
d =1

=

dt+1 _dt >0

MIXED INTEGER LINEAR PROGRAMMING

Minimizing the magnitude of inputs
Define new variable

>

jul:
m

u

Add two sets of constraints

u™ >u u

m

u =>-u

Minimize u™ at each timestep

Works for LP, NLP as well
u™ referred to as a slack variable

SOLUTION METHODS FOR INTEGER PROGRAMS

o Enumeration — Tree Search, Dynamic Programming
etc.

» Guaranteed to find a feasible solution (only consider
Integers, can check feasibility (P))

» But, guaranteed exponential growth in computation time

SOLUTION METHODS FOR INTEGER PROGRAMS

o How about solving LLP Relaxation followed by
rounding?

Integer Solution

olution

A

INTEGER PROGRAMS

o LP solution provides lower bound on IP

o But, rounding can be arbitrarily far away from
Integer solution @

COMBINED APPROACH TO INTEGER PROGRAMMING

o Why not combine both approaches!
» Solve LP Relaxation to get fractional solutions

» Create two sub-branches by adding constraints

SOLUTION METHODS FOR INTEGER PROGRAMS

o Known as Branch and Bound
» Branch as above
» LP give lower bound, feasible solutions give upper bound

LP

J* =J,

x;=4.3, x,= 1.9

X;= 3.6, Xx,=1 X;= 4.2, Xo= 2

LP+x>4 +x,<1

J*=J,

Worse than J; Infeasible True optimum Infeasible

BRANCH AND BOUND METHOD
Branch and Bound Algorithm

1. Solve LP relaxation for lower bound on cost for
current branch

If solution exceeds upper bound, branch is
terminated

If solution 1s integer, replace upper bound on cost if
lower

2.Create two branched problems by adding
constraints to original problem

Select integer variable with fractional LP solution
Add integer constraints to the original LLP

3.Repeat until no branches remain, return optimal
solution.

INTEGER PROGRAMS

o Order matters
» All solutions cause branching to stop

» EKach feasible solution 1s an upper bound on optimal
cost, allowing elimination of nodes

1
thenx, g |

ADDITIONAL REFINEMENTS —CUTTING PLANES

o Idea stems from adding additional constraints to
LP to improve tightness of relaxation

o Combine constraints to eliminate non-integer
solutions

o All feasible
integer
solutions
remain feasible

e (Current LLP
solution 1s not
feasible

Added Cut

OUTLINE

Optimal Planning

Motion Planning with Mixed Integer Linear
Programming

OPTIMAL PLANNING

Mixed Integer Linear Program (MILP)
(NP-hard) computational complexity

min fTx
xeX
Ax<b

A\eq = beq

where X < Z" xR™

S.t.

Exponential growth in complexity

However, many problems can be solved
surprisingly quickly

MINLP, MILQP etc.

MIXED INTEGER LINEAR PROGRAMMING

The core 1ssue with NLPs are
Smooth obstacle definitions
Local minima

Difficulty evaluating alternative routes around
obstacles
o Continuous deformation can’t jump over holes

Alternative 1s to pose as MILP

o Integer variable represents whether or not a constraint is
active
o Guaranteed to find optimal solution

o Exponential complexity growth in number of binary
decision variables

o Limited to linear dynamics

MIXED INTEGER LINEAR PROGRAMS

Solved via branch and bound

Same concept as A* search

If lower bound on cost exceeds current best solution, no need to
evaluate this branch of solutions further

The faster a good upper bound on the optimal cost is found, and the
tighter the lower bounds on costs-to-go, the faster a solution can be
proven optimal

Optimization Packages

ILOG CPLEX: Gold standard of industry, expensive, but
free for academaics!

LU-solve: free, open source, easy to use, callable from
Matlab, included in code library with a dll for Win 64.

MIXED INTEGER LINEAR PROGRAM

Path Planning example

Note: It 1s difficult to devise a real world robotics
problem that is a pure Linear Program, but with

Integer variables, things get more interesting!
N

Linear dynamics

1 dt 0 O 0 0
0 1 0 O dt 0
X, = X4 T U,
0 0 1 dt 0 0
00 0 1] |0 dt

X, = AX,_, + Bu,

MIXED INTEGER LINEAR PROGRAM

o Path Planning example
» Initial and final positions
Xo = Po X, = Pe
Minimum and maximum inputs
u<u <u
Minimum and maximum positions

T X
Minimum and maximum velocities

X

X471 eV
Obstacles

Ne
ai,ext_bi,e_l\/I (1_Oi,e)£0 Z:];Oi,e >1

MIXED INTEGER LINEAR PROGRAM

Path Planning example
Optimization variables

m

X =[X;...% Uy...Ur Uy ..

m

Up 0p5...0,y.0y5...0, -0y]

Costs

o Minimize control magnitudes (u™) = =

f=[0 0 -1 0] =

Example is fixed time, can add in minimum time as
well

o Append T binary decision variables to indicate when end
goal 1s reached

o Replace dynamics equality constraints with four sets of
inequalities

MIXED INTEGER LINEAR PROGRAM

o Results
» 5 Obstacles 207
» 20 time steps

* 2.5 minutes to
compute solution

MIXED INTEGER LINEAR PROGRAMMING

201

o Results 18}

16

» Best known solution
after 15 seconds

141

» After 10 seconds, a
solution only 2.5%
worse 1s found

» Remainder of time
spend ensuring this is
truly the optimal
solution!

MIXED INTEGER LINEAR PROGRAMMING

Run time — 2 obstacles, 100 runs

88 under a second, 96 under 2 seconds, 1 took 36
seconds.

a0

80

70

60

50

40

30

20

10

0 -

A

