
ME 597: AUTONOMOUS MOBILE ROBOTICS
SECTION 8 – PLANNING III

Prof. Steven Waslander

2

COMPONENTS

Actuators Vehicle Sensors

Control Estimation

Hardware

Vehicle Autonomy

Environmental Autonomy

Path
Planning Mapping

Mission Autonomy

Mission
Planning

Mission
Mapping

 Optimal Planning

 Motion Planning with Nonlinear Programming

 Receding Horizon Planning

3

OUTLINE

Non-Linear Program (NLP)
 (P) Convex problems are easy to solve
 Non-convex problems harder, not guaranteed to

find global optimum (local minima can occur)

OPTIMAL PLANNING
M

E
 780: A

utonom
ous M

obile
R

obotics

4

min ()

() 0
s.t.

() 0

nx
f x

g x
h x








:
:
:

n

n m

n p

f
g
h







 
 
 

 Application to mobile robotics
 It is possible to formulate motion planning with

NLPs
 However, a poorly formulated problem may not converge
 Not guaranteed to find a global optimum, can be stuck in

very poor solutions

 Obstacles are particularly hard
 Difficult for continuous algorithms to jump from one side to

other

 Initial feasible solution required, but impacts
solution quality

5

NONLINEAR PROGRAMMING

 Path Planning Example
 Dynamics – our favorite two wheeled robot

 Initial feasible solution
 Set velocity and turn rate to zero, hold initial position
 Pick feasible inputs and propagate dynamics

 Ensure constraints are not violated

6

NONLINEAR PROGRAM

1, 1, 1 1, 3, 1

2, 1 2, 1 1, 3, 1

3, 3, 1 2,

cos
(,) sin

t t t t

t t t t t t

t t t

x x u x dt
x g x u x u x dt
x x u dt

 

  



   
        

      

 Trajectory Tracking Example
 Initial position

 Input bounds on velocity and turn rate

 Desired trajectory

 Heading not specified, so not penalized in cost
7

NONLINEAR PROGRAM

0 [0 2 0]p 

 () sin(0.3) Tdx t t t

 Trajectory Tracking Example
 Costs

 Quadratic deviation from desired trajectory

 Quadratic penalty on inputs

8

NONLINEAR PROGRAM

2

1

() || ||
T

d
d t t

t

f x K x x


 

 
1 2

2 2
1, 2,

1

()
T

u t u t
t

f x K u K u


 

 Implementation in Matlab
 Use fmincon function

[X,FVAL,EXITFLAG,OUTPUT,LAMBDA] =
fmincon(@(x) cost(x),x0,A,B,Aeq,Beq,LB,UB,@(x)

constraints(x), options);

 Notation – defining functions for Matlab to use

 @(x) cost(x) is a function handle to function
cost(x), which is a function of x (@(x))

9

NONLINEAR PROGRAM

 Implementation in Matlab
 Must provide two functions for this optimization

 Cost function that takes current x and returns cost
f = cost(x)

 Nonlinear constraints function that takes x and returns
g(x) and h(x) (g(x)<=0, h(x)=0)

[Gineq, Heq] = constraints(x)

 To provide information other than x,
 Use global variables (declared at top of main and

function)
global xd T dt

 Pass in additional arguments to fmincon after options

10

NONLINEAR PROGRAM

 Trajectory Tracking Example
 Low weights on inputs
 Tracks very well
 Plans reconnect to desired trajectory nicely

11

NONLINEAR PROGRAM

Desired
Actual

 Trajectory Tracking Example
 Higher weights on turn rate input
 Starts to trade off tracking and input
 End condition has a big impact on solution

12

NONLINEAR PROGRAM

 A big benefit of the NLP formulation is the
ability to add nonlinear constraints
 Obstacles

 Must be defined so as to permit smooth derivatives
 Circles work well for this

 Define center xi and radius ri of circular obstacle i.

13

NONLINEAR PROGRAM

 2 2() || || 0i i
tg x r x x   

ir

()g x

r

 Trajectory Tracking with obstacles
 20 timesteps
 6 obstacles
 Large input bounds

 Initial conditions
 Stay at x0

 v0, w0 = 0

 Local minimum

14

NONLINEAR PROGRAM

 Trajectory Tracking with obstacles
 20 timesteps
 6 obstacles
 Large input bounds

 Issues
 Discretization
 Allowable inputs

 Solutions
 Smaller discretization, longer computation time
 Continuous formulation

 single shooting, multiple shooting, collocation
 Also enable minimum time problem formulations 15

NONLINEAR PROGRAM

Problem 10 20 40 Comment
NLP 8 s 28 s 96 s 1 run

NLP - Obs 9 s 35 s 388 s 1 run

16

RUN TIMES

 Very approximate run times
 Based on small sample size
 Highly dependent on problem instance for obstacles

 Optimal Planning

 Motion Planning with Nonlinear Programming

 Receding Horizon Planning

17

OUTLINE

 Instead of solving for the entire plan, plan as you
go along
 Continuously use computation resources
 Smaller optimization problem at each step
 More susceptible to local minima

 Escape from minima must be possible within horizon

 Receding Horizon Control also called Model
Predictive Control (MPC) 18

RECEDING HORIZON APPROACH

 Algorithm
 Pick receding horizon length T
 At each timestep

 Set initial state to predicted state
 Perform optimization over finite horizon
 Apply control from first timestep of previous iteration
 Predict state at next time step using motion model

19

RECEDING HORIZON CONTROL

t-1 t

Move to xt

Compute ut+1:t+T

At xt, apply ut+1At xt-1, apply ut

 Pictorially

 1)

 2)

 3)

20

RECEDING HORIZON CONTROL

 NLP Example with RHC
 Horizon T=5

 1-2 seconds per time step

21

RECEDING HORIZON CONTROL

 Comments
 Originally developed for process control

 1-2 hour updates, trying to model complex chemical
processes

 Even more susceptible to local minima than full NLP
 Since NLP complexity is roughly O(n3), this can be a

big computational savings
 All DARPA Grand and Urban challenge vehicles had

some form of RHC for path planning
 Similar to trajectory rollout

 An optimization instead of a fixed discrete search

22

RECEDING HORIZON CONTROL

23

EXTRA SLIDES

 Linear Program (LP)
 (P) Easy, fast to solve, convex

 Matlab command:
x = linprog(f, A, b, Aeq, beq, LB, UB, x0)

 Almost no planning problems are linear (trivial
example in the extra slides) 24

OPTIMIZATION PROBLEM TYPES

min

s.t.

n

T

x X

eq eq

f x

Ax b
A x b

 




 Simplex Method
 Optimum must be at the intersection of constraints
 Intersections are easy to find, change inequalities to

equalities, add slack variables
 Jump from one vertex to the next (in a smart way),

until no more improvement is possible

SOLUTION METHODS FOR LINEAR PROGRAMS

-fT

x1

x2

25

SOLUTION METHOD FOR LINEAR PROGRAMS

 Interior Point Methods
 Apply Barrier Function to each constraint and sum
 Primal-Dual Formulation
 Newton Step or other
 At each iteration,

increase slope of barriers
 Benefits

 Scales better than Simplex
 Certificate of Optimality

 Stop whenever
 Know how close to optimal

the current solution is
 Relies on duality

-fT

x1

x2

26

 Path Planning example
 Note: It is difficult to devise a real world robotics

problem that is an LP

 Linear dynamics

27

LINEAR PROGRAM

1

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

t t t

dt
dt

x x u
dt

dt



   
   
    
   
      

1t t tx Ax Bu 

 Path Planning example
 Initial and final positions

 Minimum and maximum inputs

 Minimum and maximum positions

 Define normal to line and offset

28

LINEAR PROGRAM

0 0x p
Ft Fx p

tu u u 

1:2,tx X
X

Fp

5x y 

5

5

 Path Planning Example
 Formulation as a Linear Program

 Define time horizon: T
 Define time step: dt

 Number of states: n
 Number of inputs: m

 Number of optimization variables per timestep: N=n+m
 Total number of optimization variables: M = N*T

 Optimization vector:

 Extra set of inputs, constrain to zero 29

LINEAR PROGRAM

0 1 1[]
F F

T
t tx x u x u   

 Path Planning example
 Costs

 Must be a linear combination of
states and inputs

 Maximize x+y position (avoid origin)
 Minimize speed
 Minimize use of control inputs

 For distance from desired, can use L1
norm

 Requires transformation of variables 30

LINEAR PROGRAM

2

1
1

|| ||d d
i i

i

x x x x


  

  1
1(,) 1 1 1 1 3 3 t

t t t
t

x
f x u

u



 

     

dx

O

 Path Planning Example
 Formulation as a Linear Program

 Define cost:

 Define equality constraints for dynamics
 Rewrite in standard form

 Specify for each timestep

31

LINEAR PROGRAM

1
1

() (,)
T

t t t
t

f x f x u


 

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

A B I
A B I

Aeq

A B I

 
 
 
 
  



1 0t t tAx Bu x   

0Beq 

 Path Planning Example
 Other equality constraints added to the bottom of the

Aeq and Beq matrices

 Inequality constraints also compiled into a single
Aineq, Bineq matrix pair
 One set of constraints to add at each time step

 Bounds on inputs
 Bounds on state
 Region definition

32

LINEAR PROGRAM

0 0x p
Ft Fx p

 Path Planning Example
 The resulting Aeq sparsity pattern

 spy(A) in Matlab

33

LINEAR PROGRAM

 Path Planning Example
 Equality constraints code

34

LINEAR PROGRAM

n = length(A(1,:));
m = length(B(1,:));

% Dynamics
for i=1:T-1

Aeq(n*(i-1)+1:n*i, (n+m)*(i)+1:(n+m)*(i)+4) = -eye(n);
Aeq(n*(i-1)+1:n*i, (n+m)*(i-1)+1:(n+m)*(i-1)+4) = A;
Aeq(n*(i-1)+1:n*i, (n+m)*(i-1)+5:(n+m)*(i-1)+6) = B;
beq(n*(i-1)+1:n*i) = zeros(n,1);

end

% Initial and Final Conditions
Aeq(n*(T-1)+1:n*(T-1)+n,1:n) = eye(n);
Aeq(n*(T-1)+n+1:n*(T-1)+2*n+m,(n+m)*(T-1)+1:(n+m)*T) = eye(n+m);
beq(n*(T-1)+1:n*(T-1)+2*n+m,1) = [p0'; pF'];

 Path Planning Example
 The resulting Aineq sparsity pattern

 spy(A) in Matlab

35

LINEAR PROGRAM

 Path Planning Example
 Inequality constraint code

 Could also be included in bounds on state/inputs

36

LINEAR PROGRAM

g = [0 1; 0 -1; 1 0; -1 0];
b = [4.2; 0; 4.2; 0];
q = length(g(:,1));

for i = 1:T
Aineq(q*(i-1)+1:q*i, (n+m)*(i-1)+1:2:(n+m)*(i-1)+3) = g;
bineq(q*(i-1)+1:q*i) = b;

end

 Path Planning Example
 Once all of the setup is complete

37

LINEAR PROGRAM

[X,FVAL,EXITFLAG,OUTPUT,LAMBDA] =
linprog(f,Aineq,bineq,Aeq,beq,LB,UB,x0,options);

Residuals: Primal Dual Upper Duality Total
Infeas Infeas Bounds Gap Rel
A*x-b A'*y+z-w-f {x}+s-ub x'*z+s'*w Error

Iter 0: 6.22e+002 3.74e+001 8.02e+002 9.18e+004 2.69e+000
Iter 1: 4.67e+000 9.61e-015 6.02e+000 2.27e+003 1.20e+000
Iter 2: 7.64e-011 2.44e-013 0.00e+000 9.27e+001 3.17e-001
Iter 3: 1.56e-010 4.43e-014 3.08e-015 2.19e+001 7.54e-002
Iter 4: 5.00e-011 6.75e-015 0.00e+000 6.13e+000 2.12e-002
Iter 5: 3.16e-011 6.30e-015 2.51e-015 9.12e-001 3.17e-003
Iter 6: 5.20e-011 6.54e-015 2.51e-015 9.89e-003 3.44e-005
Iter 7: 2.72e-011 6.48e-015 1.78e-015 4.95e-007 1.72e-009

Optimization terminated.

 Path Planning Example
 Initial location

 Final location

 Allowable region

 Cost per timestep Control bounds
38

LINEAR PROGRAM

0 [1 3]p 

[4 1]Fp 

{(,) | , [0,4.2]}X x y x y 

| | 5u   1
1(,) 1 1 1 1 3 3 t

t t t
t

x
f x u

u



 

     

 Path Planning Example,
 More time

 T = 40

 Allowable region

 Control bounds

39

LINEAR PROGRAM

{(,) | , [0,4.2]}X x y x y 

| | 5u 

 Path planning example
 Lagrange multipliers for all inequality constraints

 All four sides of environment at each timestep

40

LINEAR PROGRAM

 Path planning example
 Lagrange multipliers for all variable bounds

 Four states and two inputs at each timestep

41

LINEAR PROGRAM

Lower Upper

 Quadratic Program (QP)
 (P) Quadratic cost with linear constraints O(n3)

 Still fairly easy, fast to solve and convex

 Matlab command:
x = quadprog(Q, A, b, Aeq, beq, LB, UB, x0)

 Kalman filter, LQR (unconstrained)
 In fact, any convex problem can be solved quickly

 Matlab toolbox: cvx 42

OPTIMIZATION PROBLEM TYPES

min

s.t.

n

T

x X

eq eq

x Qx

Ax b
A x b

 




 Sequential Quadratic Programming
 Also an interior point method
 At each iteration, calculate gradient and Hessian of

Lagrangian
 If problem is a quadratic program, apply Newton step

to optimal solution
 If not, use Newton step direction as a descent

direction and apply a line search
 Finding Newton step involves inverse of Hessian

43

SOLUTION METHODS FOR NLPS

 Key insight into problem formulation
 Since binary/integer variables are tied directly to

complexity, use as few as possible

 Key formulation trick – Big-M constraints
 A binary decision variable and large constant can be

used to selectively relax a set of constraints

 Expensive solvers can sometimes do this without
numerical issues
 CPLEX logical indicator constraints

MIXED INTEGER LINEAR PROGRAMMING

0 0
0

0 1
Ax B b

Ax B Mb
Mb b
  

      

44

 Representing obstacles in MILP

45

MIXED INTEGER LINEAR PROGRAMMING

Obstacle

3a

2a

1a

4a

 Representing Obstacles in MILP
 At each timestep, for each obstacle

 Each edge requires a single constraint

 oi,e is a binary decision variable
 0 – constraint is inactive
 1 – constraint is active

 M is a large number that relaxes the constraint when not
active

 At each time step, for each obstacle
 Must be satisfying at least one obstacle edge constraints

46

MIXED INTEGER LINEAR PROGRAMMING

 , , ,1 0i e t i e i ea x b M o   

,
1

1
eN

i e
e

o




 Minimum time formulation
 Dynamics apply when not at end point

 Vehicle does not move once end point is reached

 This requires the end point to be consistent with dynamics
 For the 4 state linear motion model, ensure end point

velocities are 0.

 Formulate big-M constraints to use dynamics while
moving and fixed end point once arrived

47

MIXED INTEGER LINEAR PROGRAMMING

1 0t t tAx Bu x   

1 0t tx x  

 Minimum Time Formulation
To relax equality constraints, must convert to pairs of

inequality constraints
For dynamics,

For end point,

And ensuring we don’t leave the end point once arrived

48

MIXED INTEGER LINEAR PROGRAMMING

1

1

0
0

t t t t

t t t t

Ax Bu x Md
Ax Bu x Md





   
   

1

1

(1) 0
(1) 0

t t t

t t t

x x M d
x x M d





   
   

1 0t td d  

Ft Fx x

0
0

1
F

t

t

d

d





 Minimizing the magnitude of inputs
 Define new variable

 Add two sets of constraints

 Minimize um at each timestep

 Works for LP, NLP as well
 um referred to as a slack variable

49

MIXED INTEGER LINEAR PROGRAMMING

u

| |u
mu

mu u
mu u 

 Enumeration – Tree Search, Dynamic Programming
etc.

 Guaranteed to find a feasible solution (only consider
integers, can check feasibility (P))

 But, guaranteed exponential growth in computation time

SOLUTION METHODS FOR INTEGER PROGRAMS

x1=0

X2=0 X2=2X2=1

x1=1 x1=2

X2=0 X2=2X2=1X2=0 X2=2X2=1

50

SOLUTION METHODS FOR INTEGER PROGRAMS

 How about solving LP Relaxation followed by
rounding?

-cT

x1

x2

LP Solution

Integer Solution

51

INTEGER PROGRAMS

 LP solution provides lower bound on IP
 But, rounding can be arbitrarily far away from

integer solution

-cT

x1

x2

52

COMBINED APPROACH TO INTEGER PROGRAMMING

-cT

x1

x2

-cT

x1

x2

 Why not combine both approaches!
 Solve LP Relaxation to get fractional solutions
 Create two sub-branches by adding constraints

x2≤1

x2≥2

53

 Known as Branch and Bound
 Branch as above
 LP give lower bound, feasible solutions give upper bound

SOLUTION METHODS FOR INTEGER PROGRAMS

LP

J* = J0

LP + x2≥2

J* = J2

LP + x2≤1

J* = J1

x1=4.3, x2= 1.9

LP + x1≤3 + x2≤1

J* = J3

LP + x1≥4 + x2 ≤1

J* = J4

LP + x1≥5 + x2≥2

J* = J6

LP + x1≤4 + x2≥2

J* = J5

x1= 4.2, x2= 2 x1= 3.6, x2= 1

True optimumWorse than J5 Infeasible Infeasible

BRANCH AND BOUND METHOD

Branch and Bound Algorithm
1.Solve LP relaxation for lower bound on cost for

current branch
 If solution exceeds upper bound, branch is

terminated
 If solution is integer, replace upper bound on cost if

lower
2.Create two branched problems by adding

constraints to original problem
Select integer variable with fractional LP solution
Add integer constraints to the original LP

3.Repeat until no branches remain, return optimal
solution.

55

 Order matters
 All solutions cause branching to stop
 Each feasible solution is an upper bound on optimal

cost, allowing elimination of nodes

56

INTEGER PROGRAMS

-cT

x1

x2

Branch x2Branch x1
then x2

Branch x1

ADDITIONAL REFINEMENTS –CUTTING PLANES

 Idea stems from adding additional constraints to
LP to improve tightness of relaxation

 Combine constraints to eliminate non-integer
solutions

x1

x2

Added Cut

 All feasible
integer
solutions
remain feasible

 Current LP
solution is not
feasible

57

 Optimal Planning

 Motion Planning with Nonlinear Programming

 Receding Horizon Planning

 Motion Planning with Mixed Integer Linear
Programming

58

OUTLINE

Mixed Integer Linear Program (MILP)
 (NP-hard) computational complexity

 Exponential growth in complexity
 However, many problems can be solved

surprisingly quickly

MINLP, MILQP etc.

OPTIMAL PLANNING

min

s.t.

T

x X

eq eq

f x

Ax b
A b






where i rn nX   

59

 The core issue with NLPs are
 Smooth obstacle definitions
 Local minima
 Difficulty evaluating alternative routes around

obstacles
 Continuous deformation can’t jump over holes

 Alternative is to pose as MILP
 Integer variable represents whether or not a constraint is

active
 Guaranteed to find optimal solution
 Exponential complexity growth in number of binary

decision variables
 Limited to linear dynamics

60

MIXED INTEGER LINEAR PROGRAMMING

MIXED INTEGER LINEAR PROGRAMS

 Solved via branch and bound
 Same concept as A* search

 If lower bound on cost exceeds current best solution, no need to
evaluate this branch of solutions further

 The faster a good upper bound on the optimal cost is found, and the
tighter the lower bounds on costs-to-go, the faster a solution can be
proven optimal

 Optimization Packages
 ILOG CPLEX: Gold standard of industry, expensive, but

free for academics!

 LU-solve: free, open source, easy to use, callable from
Matlab, included in code library with a dll for Win 64. 61

 Path Planning example
 Note: It is difficult to devise a real world robotics

problem that is a pure Linear Program, but with
integer variables, things get more interesting!

 Linear dynamics

62

MIXED INTEGER LINEAR PROGRAM

1

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

t t t

dt
dt

x x u
dt

dt



   
   
    
   
      

1t t tx Ax Bu 

 Path Planning example
 Initial and final positions

 Minimum and maximum inputs

 Minimum and maximum positions

 Minimum and maximum velocities

 Obstacles

63

MIXED INTEGER LINEAR PROGRAM

0 0x p
Ft Fx p

tu u u 

[2,4],tx V X
Fp[1,3],tx X

 , , ,1 0i e t i e i ea x b M o    ,
1

1
eN

i e
e

o




 Path Planning example
 Optimization variables

 Costs
 Minimize control magnitudes (um)

 Example is fixed time, can add in minimum time as
well
 Append T binary decision variables to indicate when end

goal is reached
 Replace dynamics equality constraints with four sets of

inequalities
64

MIXED INTEGER LINEAR PROGRAM

 Tf  0 0 -1 0

0 0 0 1,1 1, 2,1 2, ,[]
e e e

m m
T T T N N M NX x x u u u u o o o o o      

 Results
 5 Obstacles
 20 time steps
 2.5 minutes to

compute solution

65

MIXED INTEGER LINEAR PROGRAM

 Results
 Best known solution

after 15 seconds

 After 10 seconds, a
solution only 2.5%
worse is found

 Remainder of time
spend ensuring this is
truly the optimal
solution!

66

MIXED INTEGER LINEAR PROGRAMMING

t=15s

t=10s

 Run time – 2 obstacles, 100 runs
 88 under a second, 96 under 2 seconds, 1 took 36

seconds.

67

MIXED INTEGER LINEAR PROGRAMMING

