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 Optimal Planning

 Motion Planning with Nonlinear Programming 

 Receding Horizon Planning
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Non-Linear Program (NLP)
 (P) Convex problems are easy to solve
 Non-convex problems harder, not guaranteed to 

find global optimum (local minima can occur)
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 Application to mobile robotics
 It is possible to formulate motion planning with 

NLPs 
 However, a poorly formulated problem may not converge
 Not guaranteed to find a global optimum, can be stuck in 

very poor solutions

 Obstacles are particularly hard 
 Difficult for continuous algorithms to jump from one side to 

other

 Initial feasible solution required, but impacts 
solution quality
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 Path Planning Example
 Dynamics – our favorite two wheeled robot

 Initial feasible solution
 Set velocity and turn rate to zero, hold initial position
 Pick feasible inputs and propagate dynamics 

 Ensure constraints are not violated
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 Trajectory Tracking Example
 Initial position

 Input bounds on velocity and turn rate

 Desired trajectory

 Heading not specified, so not penalized in cost
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 Trajectory Tracking Example
 Costs

 Quadratic deviation from desired trajectory

 Quadratic penalty on inputs
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 Implementation in Matlab
 Use fmincon function

[X,FVAL,EXITFLAG,OUTPUT,LAMBDA] = 
fmincon(@(x) cost(x),x0,A,B,Aeq,Beq,LB,UB,@(x)

constraints(x), options);

 Notation – defining functions for Matlab to use

 @(x) cost(x) is a function handle to function 
cost(x), which is a function of x (@(x))
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 Implementation in Matlab
 Must provide two functions for this optimization

 Cost function that takes current x and returns cost
f = cost(x)

 Nonlinear constraints function that takes x and returns  
g(x) and h(x) (g(x)<=0, h(x)=0)

[Gineq, Heq] = constraints(x)

 To provide information other than x, 
 Use global variables (declared at top of main and 

function)
global xd T dt

 Pass in additional arguments to fmincon after options 
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 Trajectory Tracking Example
 Low weights on inputs
 Tracks very well
 Plans reconnect to desired trajectory nicely 
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 Trajectory Tracking Example
 Higher weights on turn rate input
 Starts to trade off tracking and input
 End condition has a big impact on solution
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 A big benefit of the NLP formulation is the 
ability to add nonlinear constraints
 Obstacles

 Must be defined so as to permit smooth derivatives
 Circles work well for this

 Define center xi and radius ri of circular obstacle i. 
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 Trajectory Tracking with obstacles
 20 timesteps
 6 obstacles
 Large input bounds

 Initial conditions
 Stay at x0

 v0, w0 = 0

 Local minimum 
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 Trajectory Tracking with obstacles
 20 timesteps
 6 obstacles
 Large input bounds

 Issues
 Discretization
 Allowable inputs

 Solutions
 Smaller discretization, longer computation time
 Continuous formulation 

 single shooting, multiple shooting, collocation
 Also enable minimum time problem formulations 15
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Problem 10 20 40 Comment
NLP 8 s 28 s 96 s 1 run

NLP - Obs 9 s 35 s 388 s 1 run

16

RUN TIMES

 Very approximate run times
 Based on small sample size
 Highly dependent on problem instance for obstacles



 Optimal Planning

 Motion Planning with Nonlinear Programming 

 Receding Horizon Planning

17

OUTLINE



 Instead of solving for the entire plan, plan as you 
go along
 Continuously use computation resources 
 Smaller optimization problem at each step
 More susceptible to local minima

 Escape from minima must be possible within horizon

 Receding Horizon Control also called Model 
Predictive Control (MPC) 18
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 Algorithm
 Pick receding horizon length T
 At each timestep

 Set initial state to predicted state
 Perform optimization over finite horizon
 Apply control from first timestep of previous iteration
 Predict state at next time step using motion model
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 Pictorially

 1)

 2)

 3)
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 NLP Example with RHC
 Horizon T=5

 1-2 seconds per time step
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 Comments
 Originally developed for process control

 1-2 hour updates, trying to model complex chemical 
processes

 Even more susceptible to local minima than full NLP
 Since NLP complexity is roughly O(n3), this can be a 

big computational savings
 All DARPA Grand and Urban challenge vehicles had 

some form of RHC for path planning
 Similar to trajectory rollout 

 An optimization instead of a fixed discrete search
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 Linear Program (LP)
 (P) Easy, fast to solve, convex

 Matlab command: 
x = linprog(f, A, b, Aeq, beq, LB, UB, x0)

 Almost no planning problems are linear (trivial 
example in the extra slides) 24
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 Simplex Method
 Optimum must be at the intersection of constraints
 Intersections are easy to find, change inequalities to 

equalities, add slack variables
 Jump from one vertex to the next (in a smart way), 

until no more improvement is possible

SOLUTION METHODS FOR LINEAR PROGRAMS
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SOLUTION METHOD FOR LINEAR PROGRAMS

 Interior Point Methods
 Apply Barrier Function to each constraint and sum
 Primal-Dual Formulation
 Newton Step or other
 At each iteration, 

increase slope of barriers
 Benefits

 Scales better than Simplex
 Certificate of Optimality

 Stop whenever
 Know how close to optimal

the current solution is
 Relies on duality

-fT

x1

x2
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 Path Planning example
 Note: It is difficult to devise a real world robotics 

problem that is an LP

 Linear dynamics
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 Path Planning example
 Initial and final positions

 Minimum and maximum inputs

 Minimum and maximum positions

 Define normal to line and offset
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 Path Planning Example
 Formulation as a Linear Program

 Define time horizon: T
 Define time step: dt

 Number of states: n
 Number of inputs: m

 Number of optimization variables per timestep: N=n+m
 Total number of optimization variables: M = N*T

 Optimization vector: 

 Extra set of inputs, constrain to zero 29
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 Path Planning example
 Costs

 Must be a linear combination of 
states and inputs

 Maximize x+y position (avoid origin)
 Minimize speed
 Minimize use of control inputs 

 For distance from desired, can use L1
norm

 Requires transformation of variables 30
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 Path Planning Example
 Formulation as a Linear Program

 Define cost:

 Define equality constraints for dynamics
 Rewrite in standard form

 Specify for each timestep
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 Path Planning Example
 Other equality constraints added to the bottom of the 

Aeq and Beq matrices

 Inequality constraints also compiled into a single 
Aineq, Bineq matrix pair
 One set of constraints to add at each time step

 Bounds on inputs
 Bounds on state
 Region definition 
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 Path Planning Example
 The resulting Aeq sparsity pattern 

 spy(A) in Matlab
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 Path Planning Example
 Equality constraints code
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n = length(A(1,:));
m = length(B(1,:));

% Dynamics
for i=1:T-1

Aeq(n*(i-1)+1:n*i, (n+m)*(i)+1:(n+m)*(i)+4) = -eye(n);
Aeq(n*(i-1)+1:n*i, (n+m)*(i-1)+1:(n+m)*(i-1)+4) = A;
Aeq(n*(i-1)+1:n*i, (n+m)*(i-1)+5:(n+m)*(i-1)+6) = B;
beq(n*(i-1)+1:n*i) = zeros(n,1);

end

% Initial and Final Conditions
Aeq(n*(T-1)+1:n*(T-1)+n,1:n) = eye(n);
Aeq(n*(T-1)+n+1:n*(T-1)+2*n+m,(n+m)*(T-1)+1:(n+m)*T) = eye(n+m);
beq(n*(T-1)+1:n*(T-1)+2*n+m,1) = [p0'; pF'];



 Path Planning Example
 The resulting Aineq sparsity pattern 

 spy(A) in Matlab
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 Path Planning Example
 Inequality constraint code

 Could also be included in bounds on state/inputs
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g = [ 0 1; 0 -1; 1 0; -1 0];
b = [4.2; 0; 4.2; 0];
q = length(g(:,1));

for i = 1:T
Aineq(q*(i-1)+1:q*i, (n+m)*(i-1)+1:2:(n+m)*(i-1)+3) = g;
bineq(q*(i-1)+1:q*i) = b;

end



 Path Planning Example
 Once all of the setup is complete

37

LINEAR PROGRAM

[X,FVAL,EXITFLAG,OUTPUT,LAMBDA] = 
linprog(f,Aineq,bineq,Aeq,beq,LB,UB,x0,options);

Residuals:   Primal     Dual     Upper    Duality     Total
Infeas Infeas Bounds     Gap        Rel
A*x-b   A'*y+z-w-f {x}+s-ub x'*z+s'*w   Error

-------------------------------------------------------------
Iter 0:  6.22e+002 3.74e+001 8.02e+002 9.18e+004 2.69e+000
Iter 1:  4.67e+000 9.61e-015 6.02e+000 2.27e+003 1.20e+000
Iter 2:  7.64e-011 2.44e-013 0.00e+000 9.27e+001 3.17e-001
Iter 3:  1.56e-010 4.43e-014 3.08e-015 2.19e+001 7.54e-002
Iter 4:  5.00e-011 6.75e-015 0.00e+000 6.13e+000 2.12e-002
Iter 5:  3.16e-011 6.30e-015 2.51e-015 9.12e-001 3.17e-003
Iter 6:  5.20e-011 6.54e-015 2.51e-015 9.89e-003 3.44e-005
Iter 7:  2.72e-011 6.48e-015 1.78e-015 4.95e-007 1.72e-009

Optimization terminated.



 Path Planning Example
 Initial location

 Final location

 Allowable region

 Cost per timestep Control bounds                     
38
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 Path Planning Example,
 More time

 T = 40

 Allowable region

 Control bounds
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 Path planning example
 Lagrange multipliers for all inequality constraints

 All four sides of environment at each timestep
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 Path planning example
 Lagrange multipliers for all variable bounds

 Four states and two inputs at each timestep
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 Quadratic Program (QP)
 (P) Quadratic cost with linear constraints  O(n3)

 Still fairly easy, fast to solve and convex

 Matlab command: 
x = quadprog(Q, A, b, Aeq, beq, LB, UB, x0)

 Kalman filter, LQR (unconstrained)
 In fact, any convex problem can be solved quickly 

 Matlab toolbox: cvx 42
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 Sequential Quadratic Programming
 Also an interior point method
 At each iteration, calculate gradient and Hessian of 

Lagrangian
 If problem is a quadratic program, apply Newton step 

to optimal solution
 If not, use Newton step direction as a descent 

direction and apply a line search
 Finding Newton step involves inverse of Hessian

43

SOLUTION METHODS FOR NLPS



 Key insight into problem formulation
 Since binary/integer variables are tied directly to 

complexity, use as few as possible

 Key formulation trick – Big-M constraints
 A binary decision variable and large constant can be 

used to selectively relax a set of constraints

 Expensive solvers can sometimes do this without 
numerical issues
 CPLEX logical indicator constraints

MIXED INTEGER LINEAR PROGRAMMING

0 0
0

0 1
Ax B b

Ax B Mb
Mb b
  

      
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 Representing obstacles in MILP
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 Representing Obstacles in MILP
 At each timestep, for each obstacle

 Each edge requires a single constraint

 oi,e is a binary decision variable
 0 – constraint is inactive
 1 – constraint is active

 M is a large number that relaxes the constraint when not 
active 

 At each time step, for each obstacle
 Must be satisfying at least one obstacle edge constraints
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 Minimum time formulation
 Dynamics apply when not at end point

 Vehicle does not move once end point is reached

 This requires the end point to be consistent with dynamics
 For the 4 state linear motion model, ensure end point 

velocities are 0.

 Formulate big-M constraints to use dynamics while 
moving and fixed end point once arrived
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 Minimum Time Formulation
To relax equality constraints, must convert to pairs of 

inequality constraints
For dynamics,

For end point,

And ensuring we don’t leave the end point once arrived

48

MIXED INTEGER LINEAR PROGRAMMING

1

1

0
0

t t t t

t t t t

Ax Bu x Md
Ax Bu x Md





   
   

1

1

(1 ) 0
(1 ) 0

t t t

t t t

x x M d
x x M d





   
   

1 0t td d  

Ft Fx x

0
0

1
F

t

t

d

d







 Minimizing the magnitude of inputs
 Define new variable

 Add two sets of constraints

 Minimize um at each timestep

 Works for LP, NLP as well
 um referred to as a slack variable

49
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 Enumeration – Tree Search, Dynamic Programming 
etc.

 Guaranteed to find a feasible solution (only consider 
integers, can check feasibility (P) )

 But, guaranteed exponential growth in computation time

SOLUTION METHODS FOR INTEGER PROGRAMS

x1=0

X2=0 X2=2X2=1

x1=1 x1=2

X2=0 X2=2X2=1X2=0 X2=2X2=1

50



SOLUTION METHODS FOR INTEGER PROGRAMS

 How about solving LP Relaxation followed by 
rounding?

-cT

x1

x2

LP Solution

Integer Solution
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INTEGER PROGRAMS

 LP solution provides lower bound on IP
 But, rounding can be arbitrarily far away from 

integer solution

-cT

x1

x2
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COMBINED APPROACH TO INTEGER PROGRAMMING

-cT

x1

x2

-cT

x1

x2

 Why not combine both approaches!
 Solve LP Relaxation to get fractional solutions
 Create two sub-branches by adding constraints

x2≤1

x2≥2

53



 Known as Branch and Bound
 Branch as above
 LP give lower bound, feasible solutions give upper bound

SOLUTION METHODS FOR INTEGER PROGRAMS

LP 

J* = J0

LP + x2≥2 

J* = J2

LP + x2≤1

J* = J1

x1=4.3, x2= 1.9 

LP + x1≤3 + x2≤1

J* = J3

LP + x1≥4 + x2 ≤1

J* = J4

LP + x1≥5 + x2≥2

J* = J6

LP + x1≤4 + x2≥2

J* = J5

x1= 4.2, x2= 2 x1= 3.6, x2= 1 

True optimumWorse than J5 Infeasible Infeasible



BRANCH AND BOUND METHOD

Branch and Bound Algorithm
1.Solve LP relaxation for lower bound on cost for 

current branch
 If solution exceeds upper bound, branch is 

terminated
 If solution is integer, replace upper bound on cost if 

lower
2.Create two branched problems by adding 

constraints to original problem
Select integer variable with fractional LP solution
Add integer constraints to the original LP 

3.Repeat until no branches remain, return optimal 
solution.

55



 Order matters
 All solutions cause branching to stop
 Each feasible solution is an upper bound on optimal 

cost, allowing elimination of nodes

56
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ADDITIONAL REFINEMENTS –CUTTING PLANES

 Idea stems from adding additional constraints to 
LP to improve tightness of relaxation

 Combine constraints to eliminate non-integer 
solutions

x1

x2

Added Cut

 All feasible 
integer 
solutions 
remain feasible

 Current LP 
solution is not 
feasible

57



 Optimal Planning

 Motion Planning with Nonlinear Programming 

 Receding Horizon Planning

 Motion Planning with Mixed Integer Linear 
Programming
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Mixed Integer Linear Program (MILP)
 (NP-hard)  computational complexity

 Exponential growth in complexity
 However, many problems can be solved 

surprisingly quickly

MINLP, MILQP etc.

OPTIMAL PLANNING
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 The core issue with NLPs are
 Smooth obstacle definitions
 Local minima
 Difficulty evaluating alternative routes around 

obstacles
 Continuous deformation can’t jump over holes

 Alternative is to pose as MILP
 Integer variable represents whether or not a constraint is 

active
 Guaranteed to find optimal solution
 Exponential complexity growth in number of binary 

decision variables
 Limited to linear dynamics

60
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MIXED INTEGER LINEAR PROGRAMS

 Solved via branch and bound
 Same concept as A* search

 If lower bound on cost exceeds current best solution, no need to 
evaluate this branch of solutions further

 The faster a good upper bound on the optimal cost is found, and the 
tighter the lower bounds on costs-to-go, the faster a solution can be 
proven optimal

 Optimization Packages
 ILOG CPLEX: Gold standard of industry, expensive, but 

free for academics!

 LU-solve: free, open source, easy to use, callable from 
Matlab, included in code library with a dll for Win 64. 61



 Path Planning example
 Note: It is difficult to devise a real world robotics 

problem that is a pure Linear Program, but with 
integer variables, things get more interesting!

 Linear dynamics
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 Path Planning example
 Initial and final positions

 Minimum and maximum inputs

 Minimum and maximum positions

 Minimum and maximum velocities

 Obstacles

63
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 Path Planning example
 Optimization variables

 Costs
 Minimize control magnitudes (um)

 Example is fixed time, can add in minimum time as 
well
 Append T binary decision variables to indicate when end 

goal is reached
 Replace dynamics equality constraints with four sets of 

inequalities 
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 Results
 5 Obstacles
 20 time steps
 2.5 minutes to 

compute solution
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 Results
 Best known solution 

after 15 seconds 

 After 10 seconds, a 
solution only 2.5% 
worse is found

 Remainder of time 
spend ensuring this is 
truly the optimal 
solution!
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 Run time – 2 obstacles, 100 runs
 88 under a second, 96 under 2 seconds, 1 took 36 

seconds.
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