

1

ME 597: AUTONOMOUS MOBILE ROBOTICS SECTION 8 – PLANNING III

Prof. Steven Waslander

Components

OUTLINE

• Optimal Planning

- Motion Planning with Nonlinear Programming
- Receding Horizon Planning

OPTIMAL PLANNING

• Non-Linear Program (NLP)

- (P) Convex problems are easy to solve
- Non-convex problems harder, not guaranteed to find global optimum (local minima can occur)

$$\begin{array}{ll}
\min_{x \in \mathbb{R}^n} & f(x) \\
\text{s.t.} & g(x) \le 0 \\
& h(x) = 0
\end{array}$$

 $f: \mathbb{R}^{n} \to \mathbb{R}$ $g: \mathbb{R}^{n} \to \mathbb{R}^{m}$ $h: \mathbb{R}^{n} \to \mathbb{R}^{p}$

Nonlinear Programming

• Application to mobile robotics

- It is possible to formulate motion planning with NLPs
 - However, a poorly formulated problem may not converge
 - Not guaranteed to find a global optimum, can be stuck in very poor solutions
- Obstacles are particularly hard
 - Difficult for continuous algorithms to jump from one side to other
- Initial feasible solution required, but impacts solution quality

• Path Planning Example

• Dynamics – our favorite two wheeled robot

$$\begin{bmatrix} x_{1,t} \\ x_{2,t} \\ x_{3,t} \end{bmatrix} = g(x_{t-1}, u_t) = \begin{bmatrix} x_{1,t-1} + u_{1,t} \cos x_{3,t-1} dt \\ x_{2,t-1} + u_{1,t} \sin x_{3,t-1} dt \\ x_{3,t-1} + u_{2,t} dt \end{bmatrix}$$

- Initial feasible solution
 - Set velocity and turn rate to zero, hold initial position
 - Pick feasible inputs and propagate dynamics
 - Ensure constraints are not violated

• Trajectory Tracking Example

• Initial position

$$p_0 = [0 \ 2 \ 0]$$

• Input bounds on velocity and turn rate

• Heading not specified, so not penalized in cost

• Trajectory Tracking Example

• Costs

• Quadratic deviation from desired trajectory

$$f(x) = K_d \sum_{t=1}^T ||x_t - x_t^d||^2$$

• Quadratic penalty on inputs

$$f(x) = \sum_{t=1}^{T} \left(K_{u_1} u_{1,t}^2 + K_{u_2} u_{2,t}^2 \right)$$

• Implementation in Matlab

• Use fmincon function

```
[X,FVAL,EXITFLAG,OUTPUT,LAMBDA] =
fmincon(@(x) cost(x),x0,A,B,Aeq,Beq,LB,UB,@(x)
constraints(x), options);
```

• Notation – defining functions for Matlab to use

```
o@(x) cost(x) is a function handle to function
cost(x), which is a function of x (@(x))
```

• Implementation in Matlab

- Must provide two functions for this optimization
 - Cost function that takes current x and returns cost

f = cost(x)

• Nonlinear constraints function that takes x and returns g(x) and h(x) (g(x)<=0, h(x)=0)

[Gineq, Heq] = constraints(x)

- To provide information other than x,
 - Use global variables (declared at top of main and function)

```
global xd T dt
```

• Pass in additional arguments to fmincon after options

• Trajectory Tracking Example

- Low weights on inputs
- Tracks very well
- Plans reconnect to desired trajectory nicely

• Trajectory Tracking Example

- Higher weights on turn rate input
- Starts to trade off tracking and input
- End condition has a big impact on solution

- A big benefit of the NLP formulation is the ability to add nonlinear constraints
 - Obstacles
 - Must be defined so as to permit smooth derivatives
 - Circles work well for this

• Define center x^i and radius r^i of circular obstacle i.

$$g(x) = (r^{i})^{2} - ||x_{t} - x^{i}||^{2} \le 0$$

• Trajectory Tracking with obstacles

- 20 timesteps
- 6 obstacles
- Large input bounds
- Initial conditions
 Stay at x₀
 v₀, w₀ = 0
- Local minimum

• Trajectory Tracking with obstacles

- 20 timesteps
- 6 obstacles
- Large input bounds
- Issues
 - Discretization
 - Allowable inputs

• Solutions

- Smaller discretization, longer computation time
- Continuous formulation
 - single shooting, multiple shooting, collocation
 - Also enable minimum time problem formulations

RUN TIMES

• Very approximate run times

- Based on small sample size
- Highly dependent on problem instance for obstacles

Problem	10	20	40	Comment
NLP	8 s	$28 \mathrm{\ s}$	96 s	1 run
NLP - Obs	$9 \mathrm{s}$	$35 \mathrm{s}$	388 s	1 run

OUTLINE

• Optimal Planning

- Motion Planning with Nonlinear Programming
- Receding Horizon Planning

RECEDING HORIZON APPROACH

- Instead of solving for the entire plan, plan as you go along
 - Continuously use computation resources
 - Smaller optimization problem at each step
 - More susceptible to local minima
 - Escape from minima must be possible within horizon

• Receding Horizon Control also called Model Predictive Control (MPC)

RECEDING HORIZON CONTROL

• Algorithm

- Pick receding horizon length T
- At each timestep
 - Set initial state to predicted state
 - Perform optimization over finite horizon
 - Apply control from first timestep of previous iteration
 - Predict state at next time step using motion model

Receding horizon Control

• Pictorially

RECEDING HORIZON CONTROL

• NLP Example with RHC

- Horizon T=5
 - 1-2 seconds per time step

RECEDING HORIZON CONTROL

• Comments

- Originally developed for process control
 - 1-2 hour updates, trying to model complex chemical processes
- Even more susceptible to local minima than full NLP
- Since NLP complexity is roughly O(n³), this can be a big computational savings
- All DARPA Grand and Urban challenge vehicles had some form of RHC for path planning
- Similar to trajectory rollout
 - An optimization instead of a fixed discrete search

EXTRA SLIDES

OPTIMIZATION PROBLEM TYPES

• Linear Program (LP)

• (P) Easy, fast to solve, convex

$$\min_{x \in X \subseteq \Re^n} \quad f^T x$$
s.t.
$$\begin{aligned}
 Ax \le b \\
 A_{eq} x = b_{eq}
\end{aligned}$$

• Matlab command:

x = linprog(f, A, b, Aeq, beq, LB, UB, x0)

• Almost no planning problems are linear (trivial example in the extra slides)

Solution Methods for Linear Programs

• Simplex Method

- Optimum must be at the intersection of constraints
- Intersections are easy to find, change inequalities to equalities, add slack variables
- Jump from one vertex to the next (in a smart way), until no more improvement is possible

Solution Method for Linear Programs

• Interior Point Methods

- Apply Barrier Function to each constraint and sum
- Primal-Dual Formulation
- Newton Step or other
- At each iteration, increase slope of barriers
- Benefits
 - Scales better than Simplex
 - Certificate of Optimality
 - Stop whenever
 - Know how close to optimal the current solution is
 - Relies on duality

• Path Planning example

- Note: It is difficult to devise a real world robotics problem that is an LP
- Linear dynamics

$$x_{t} = \begin{bmatrix} 1 & dt & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & dt \\ 0 & 0 & 0 & 1 \end{bmatrix} x_{t-1} + \begin{bmatrix} 0 & 0 \\ dt & 0 \\ 0 & 0 \\ 0 & dt \end{bmatrix} u_{t}$$

$$x_t = Ax_{t-1} + Bu_t$$

• Path Planning example

• Initial and final positions

$$x_0 = p_0 \qquad x_{t_F} = p_F$$

• Minimum and maximum inputs

$$\underline{u} \le u_t \le \overline{u}$$

• Minimum and maximum positions $r \in Y$

$$x_{1:2,t} \in X$$

• Define normal to line and offset

$$x + y \le 5$$

• Path Planning Example

- Formulation as a Linear Program
 - Define time horizon: T
 - Define time step: dt

• Number of states: n

• Number of inputs: m

Number of optimization variables per timestep: N=n+m
Total number of optimization variables: M = N*T

• Optimization vector:

$$x = \begin{bmatrix} x_0 & u_1 & \dots & x_{t_F} & u_{t_F+1} \end{bmatrix}^T$$

• Extra set of inputs, constrain to zero

• Path Planning example

- Costs
 - Must be a linear combination of states and inputs
 - Maximize x+y position (avoid origin)
 - Minimize speed
 - Minimize use of control inputs

$$f_t(x_{t-1}, u_t) = \begin{bmatrix} -1 & 1 & -1 & 1 & 3 & 3 \end{bmatrix} \begin{bmatrix} x_{t-1} \\ u_t \end{bmatrix}$$

- For distance from desired, can use L_1 norm $||x - x^d||_1 = \sum_{i=1}^2 |x_i - x_i^d|$
- Requires transformation of variables

• Path Planning Example

Formulation as a Linear Program
Define cost:

$$f(x) = \sum_{t=1}^{T} f_t(x_{t-1}, u_t)$$

Define equality constraints for dynamics
Rewrite in standard form

$$Ax_{t-1} + Bu_t - x_t = 0$$

• Specify for each timestep

$$Aeq = \begin{bmatrix} A & B & -I & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & A & B & -I & 0 & 0 & 0 & 0 & 0 \\ & & & \ddots & & & & \\ 0 & 0 & 0 & 0 & 0 & 0 & A & B & -I & 0 \end{bmatrix} Beq = 0$$

• Path Planning Example

• Other equality constraints added to the bottom of the Aeq and Beq matrices

$$x_0 = p_0 \qquad x_{t_F} = p_F$$

- Inequality constraints also compiled into a single Aineq, Bineq matrix pair
 - One set of constraints to add at each time step
 - Bounds on inputs
 - Bounds on state
 - Region definition

• Path Planning Example

The resulting Aeq sparsity pattern
 spy(Λ) in Matlab

• Path Planning Example

• Equality constraints code

```
n = length(A(1,:));
m = length(B(1,:));
```

```
% Dynamics
for i=1:T-1
    Aeq(n*(i-1)+1:n*i, (n+m)*(i)+1:(n+m)*(i)+4) = -eye(n);
    Aeq(n*(i-1)+1:n*i, (n+m)*(i-1)+1:(n+m)*(i-1)+4) = A;
    Aeq(n*(i-1)+1:n*i, (n+m)*(i-1)+5:(n+m)*(i-1)+6) = B;
    beq(n*(i-1)+1:n*i) = zeros(n,1);
end
```

```
% Initial and Final Conditions
Aeq(n*(T-1)+1:n*(T-1)+n,1:n) = eye(n);
Aeq(n*(T-1)+n+1:n*(T-1)+2*n+m,(n+m)*(T-1)+1:(n+m)*T) = eye(n+m);
beq(n*(T-1)+1:n*(T-1)+2*n+m,1) = [p0'; pF'];
```

• Path Planning Example

The resulting Aineq sparsity pattern
spy(A) in Matlab

• Path Planning Example

- Inequality constraint code
 - Could also be included in bounds on state/inputs

```
g = [ 0 1; 0 -1; 1 0; -1 0];
b = [4.2; 0; 4.2; 0];
q = length(g(:,1));
for i = 1:T
    Aineq(q*(i-1)+1:q*i, (n+m)*(i-1)+1:2:(n+m)*(i-1)+3) = g;
    bineq(q*(i-1)+1:q*i) = b;
end
```
• Path Planning Example

• Once all of the setup is complete

```
[X, FVAL, EXITFLAG, OUTPUT, LAMBDA] =
```

linprog(f,Aineq,bineq,Aeq,beq,LB,UB,x0,options);

Residuals:		Primal Infeas	Dual Infeas	Upper Bounds	Duality Gap	Total Rel
		A*x-b	A'*y+z-w-f	{x}+s-ub	X'*Z+S'*W	Error
Iter	0:	6.22e+002	3.74e+001	8.02e+002	9.18e+004	2.69e+000
Iter	1:	4.67e+000	9.61e-015	6.02e+000	2.27e+003	1.20e+000
Iter	2:	7.64e-011	2.44e-013	0.00e+000	9.27e+001	3.17e-001
Iter	3:	1.56e-010	4.43e-014	3.08e-015	2.19e+001	7.54e-002
Iter	4:	5.00e-011	6.75e-015	0.00e+000	6.13e+000	2.12e-002
Iter	5:	3.16e-011	6.30e-015	2.51e-015	9.12e-001	3.17e-003
Iter	6:	5.20e-011	6.54e-015	2.51e-015	9.89e-003	3.44e-005
Iter	7:	2.72e-011	6.48e-015	1.78e-015	4.95e-007	1.72e-009
Optimizat	Optimization		•			

• Path Planning Example

- Initial location
 - $p_0 = [1 \quad 3]$
- Final location $p_F = \begin{bmatrix} 4 & 1 \end{bmatrix}$
 - Allowable regio
- Allowable region

$$X = \{(x, y) \mid x, y \in [0, 4.2]\}$$

• Cost per timestep

$$f_t(x_{t-1}, u_t) = \begin{bmatrix} -1 & 1 & -1 & 1 & 3 & 3 \end{bmatrix} \begin{bmatrix} x_{t-1} \\ u_t \end{bmatrix}$$
Control bounds

$$|u| \le 5$$

0.5

1.5

1

2

2.5

3

3.5

4.5

38

4

3.5 r

3

2.5

2

1.5

1

0.5

0

Ó

Linear Program path planning

• Path Planning Example,

39

• Path planning example

- Lagrange multipliers for all inequality constraints
 - All four sides of environment at each timestep

40

• Path planning example

- Lagrange multipliers for all variable bounds
 - Four states and two inputs at each timestep

OPTIMIZATION PROBLEM TYPES

• Quadratic Program (QP)

• (P) Quadratic cost with linear constraints $O(n^3)$

• Still fairly easy, fast to solve and convex

$$\min_{x \in X \subseteq \mathfrak{R}^n} \quad x^T Q x$$
s.t.
$$Ax \le b$$

$$A_{eq} x = b_{eq}$$

• Matlab command:

x = quadprog(Q, A, b, Aeq, beq, LB, UB, x0)

- Kalman filter, LQR (unconstrained)
- In fact, any convex problem can be solved quickly
 Matlab toolbox: cvx

SOLUTION METHODS FOR NLPS

• Sequential Quadratic Programming

- Also an interior point method
- At each iteration, calculate gradient and Hessian of Lagrangian
- If problem is a quadratic program, apply Newton step to optimal solution
- If not, use Newton step direction as a descent direction and apply a line search
- Finding Newton step involves inverse of Hessian

• Key insight into problem formulation

- Since binary/integer variables are tied directly to complexity, use as few as possible
- Key formulation trick Big-M constraints
 - A binary decision variable and large constant can be used to selectively relax a set of constraints

$$Ax - B + Mb \ge 0 \rightarrow \begin{cases} Ax - B \ge 0 & b = 0\\ Mb \ge 0 & b = 1 \end{cases}$$

 Expensive solvers can sometimes do this without numerical issues
 CPLEX logical indicator constraints

• Representing Obstacles in MILP

- At each timestep, for each obstacle
 - Each edge requires a single constraint

$$a_{i,e} x_t - b_{i,e} - M(1 - o_{i,e}) \le 0$$

- $o_{i,e}$ is a binary decision variable
 - 0 constraint is inactive
 - 1 constraint is active
- *M* is a large number that relaxes the constraint when not active
- At each time step, for each obstacle
 - Must be satisfying at least one obstacle edge constraints

$$\sum_{e=1}^{N_e} o_{i,e} \geq 1$$

• Minimum time formulation

• Dynamics apply when not at end point

$$Ax_{t-1} + Bu_t - x_t = 0$$

- Vehicle does not move once end point is reached $x_t x_{t-1} = 0$
 - This requires the end point to be consistent with dynamics
 For the 4 state linear motion model, ensure end point velocities are 0.
- Formulate big-M constraints to use dynamics while moving and fixed end point once arrived

• Minimum Time Formulation

- To relax equality constraints, must convert to pairs of inequality constraints
 - For dynamics,

 $Ax_{t-1} + Bu_t - x_t + Md_t \ge 0$ $Ax_{t-1} + Bu_t - x_t - Md_t \le 0$

• For end point, $x_{t_F} = x_F$

$$x_{t} - x_{t-1} + M(1 - d_{t}) \ge 0$$
$$x_{t} - x_{t-1} - M(1 - d_{t}) \le 0$$

• And ensuring we don't leave the end point once arrived

$$d_{t+1} - d_t \ge 0$$

 $d_{t_0} = 0$
 $d_{t_F} = 1$

48

• Minimizing the magnitude of inputs

• Define new variable

 u^m

• Add two sets of constraints

 $u^m \ge u$ $u^m \ge -u$

- Minimize u^m at each timestep
- Works for LP, NLP as well
- *u^m* referred to as a slack variable

Solution Methods for Integer Programs

• Enumeration – Tree Search, Dynamic Programming etc.

- Guaranteed to find a feasible solution (only consider integers, can check feasibility (P))
- But, guaranteed exponential growth in computation time

50

Solution Methods for Integer Programs

• How about solving LP Relaxation followed by rounding?

INTEGER PROGRAMS

- LP solution provides lower bound on IP
- But, rounding can be arbitrarily far away from integer solution

COMBINED APPROACH TO INTEGER PROGRAMMING

• Why not combine both approaches!

- Solve LP Relaxation to get fractional solutions
- Create two sub-branches by adding constraints

Solution Methods for Integer Programs

• Known as Branch and Bound

- Branch as above
- LP give lower bound, feasible solutions give upper bound

BRANCH AND BOUND METHOD

• Branch and Bound Algorithm

- **1.**Solve LP relaxation for lower bound on cost for current branch
 - If solution exceeds upper bound, branch is terminated
 - If solution is integer, replace upper bound on cost if lower
- 2. Create two branched problems by adding constraints to original problem
 - Select integer variable with fractional LP solution
 - Add integer constraints to the original LP
- **3.**Repeat until no branches remain, return optimal solution.

INTEGER PROGRAMS

• Order matters

- All solutions cause branching to stop
- Each feasible solution is an upper bound on optimal cost, allowing elimination of nodes

Additional Refinements –Cutting Planes

- Idea stems from adding additional constraints to LP to improve tightness of relaxation
- Combine constraints to eliminate non-integer solutions

OUTLINE

• Optimal Planning

- Motion Planning with Nonlinear Programming
- Receding Horizon Planning
- Motion Planning with Mixed Integer Linear Programming

Optimal Planning

• Mixed Integer Linear Program (MILP)

• (NP-hard) computational complexity

$$\begin{array}{ll} \min_{x \in X} & f^T x \\ & Ax \leq b \\ \text{s.t.} & A_{eq} = b_{eq} \\ \text{where } X \subseteq \mathbb{Z}^{n_i} \times \mathbb{R}^{n_r} \end{array}$$

- Exponential growth in complexity
- However, many problems can be solved surprisingly quickly

• MINLP, MILQP etc.

• The core issue with NLPs are

- Smooth obstacle definitions
- Local minima
- Difficulty evaluating alternative routes around obstacles

• Continuous deformation can't jump over holes

- Alternative is to pose as MILP
 - Integer variable represents whether or not a constraint is active
 - Guaranteed to find optimal solution
 - Exponential complexity growth in number of binary decision variables
 - Limited to linear dynamics

• Solved via branch and bound

- Same concept as A* search
 - If lower bound on cost exceeds current best solution, no need to evaluate this branch of solutions further
 - The faster a good upper bound on the optimal cost is found, and the tighter the lower bounds on costs-to-go, the faster a solution can be proven optimal
- Optimization Packages
 - ILOG CPLEX: Gold standard of industry, expensive, but free for academics!
 - LU-solve: free, open source, easy to use, callable from Matlab, included in code library with a dll for Win 64.

• Path Planning example

- Note: It is difficult to devise a real world robotics problem that is a pure Linear Program, but with integer variables, things get more interesting!
- Linear dynamics

$$x_{t} = \begin{bmatrix} 1 & dt & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & dt \\ 0 & 0 & 0 & 1 \end{bmatrix} x_{t-1} + \begin{bmatrix} 0 & 0 \\ dt & 0 \\ 0 & 0 \\ 0 & dt \end{bmatrix} u_{t}$$
$$x_{t} = Ax_{t-1} + Bu_{t}$$

 p_F

• Path Planning example

• Optimization variables

 $X = [x_0 \dots x_T \quad u_0 \dots u_T \quad u_0^m \dots u_T^m \quad o_{1,1} \dots o_{1,N_e} o_{2,1} \dots o_{2,N_e} \dots o_{M,N_e}]$

• Costs

• Minimize control magnitudes (u^m)

 $f = \begin{bmatrix} \boldsymbol{0} & \boldsymbol{0} & -\boldsymbol{1} & \boldsymbol{0} \end{bmatrix}^T$

- Example is fixed time, can add in minimum time as well
 - Append T binary decision variables to indicate when end goal is reached
 - Replace dynamics equality constraints with four sets of inequalities

• Results

- 5 Obstacles
- 20 time steps
- 2.5 minutes to compute solution

- Results
 - Best known solution after 15 seconds
 - After 10 seconds, a solution only 2.5% worse is found
 - Remainder of time spend ensuring this is truly the optimal solution!

• Run time – 2 obstacles, 100 runs

• 88 under a second, 96 under 2 seconds, 1 took 36 seconds.

67