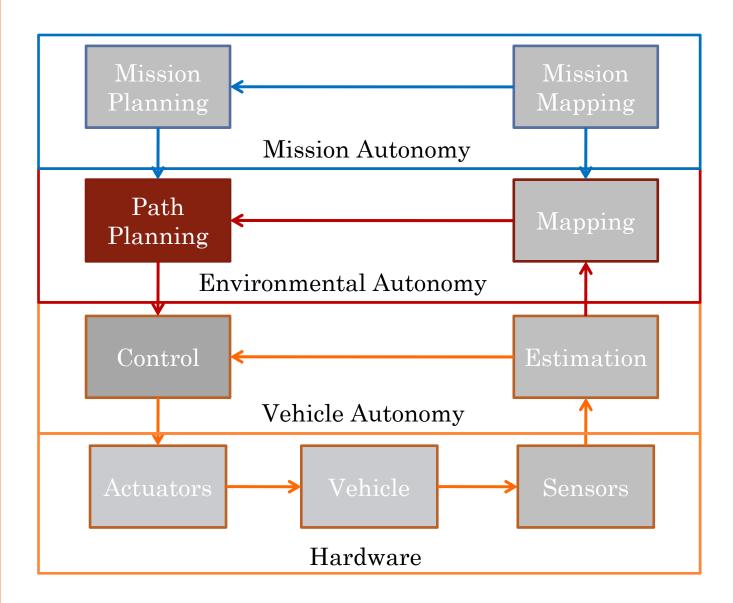


SECTION 8 – PLANNING I

Prof. Steven Waslander

COMPONENTS



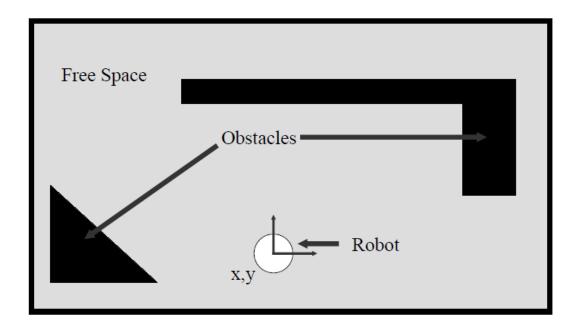
OUTLINE

- Planning Concepts
- Reactive Motion Planning Algorithms
 - Bug
 - Potential Fields
 - Trajectory Rollout
- Graph Based Motion Planning
 - Finding paths on graphs
 - o Depth First, Breadth First, Wavefront
 - o Dijkstra, A*
 - Generating Graphs from environments
 - o Visibility Graphs
 - Decompositions

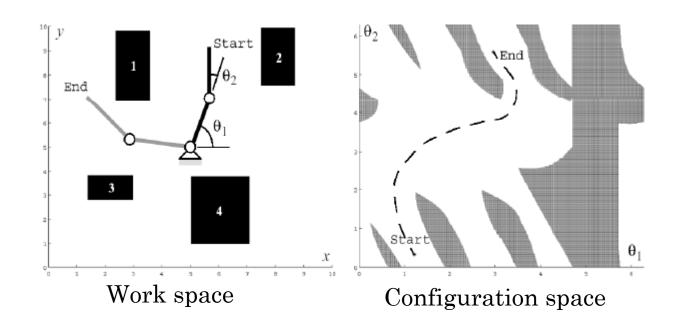
OUTLINE

- Probabilistic Graph Based Planning
 - Complex Planning Examples
 - Probabilistic Roadmaps
 - PRM Algorithm
 - Collision Detection
 - Sampling Strategies
 - RRT Algorithm
- Optimization Based Planning
 - Linear Programming
 - Nonlinear Programming

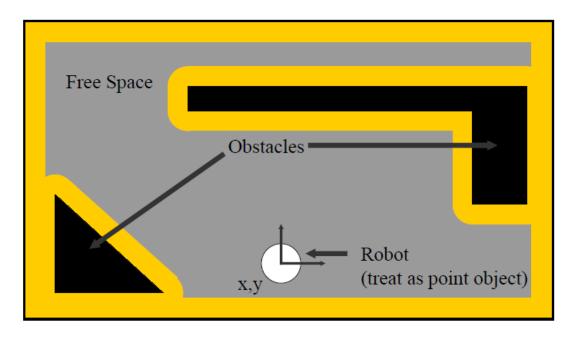
- Motion Planning Terminology
 - Work space
 - The environment the vehicle finds itself in
 - Comes from industrial robotics
 - 2-3D physical world
 - Can be defined in a number of ways
 - Polygons, Surfaces, Occupancy grids



- Motion Planning Terminology
 - Configuration Space
 - Complete planning space of robot
 - For two linkage robot, workspace is 2D space of joint angles, minus black areas which are positions blocked by obstacles
 - Configuration space is much different, defined by allowable states in white, unallowable in grey



- Motion Planning Terminology
 - Configuration space for a two wheeled non-point robot



- Can be insufficient to simply expand the obstacle
 - Can find x,y path but must also identify heading to travel in
 - Constraints on velocity not represented here

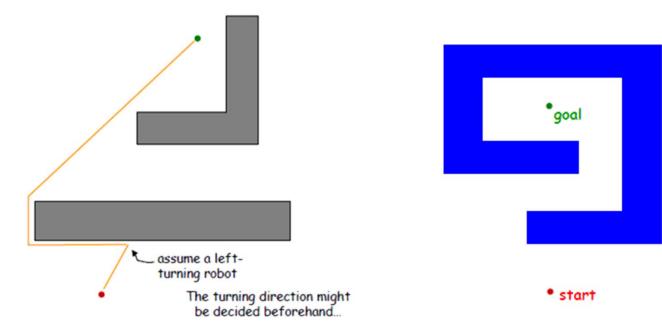
- Objectives
 - Predefined target configuration
 - Guaranteed to find a path
 - Minimum distance
 - Minimum time
 - Minimum cost (drivability, risk)
 - Coverage/Search
 - Explore/monitor an area by visiting all locations
 - At least once
 - Exactly once
 - Minimizing time between visits etc.

- Constraints
 - Occupancy
 - Obstacles defined by geometric representation
 - State of vehicle cannot violate obstacle regions
 - Included in definition of work space, configuration space
 - Dynamics
 - Holonomic vs Nonholonomic
 - When motion constraints involve vehicle velocities, the system is considered nonholonomic
 - Much harder planning problem
 - Two wheeled robot a classic example

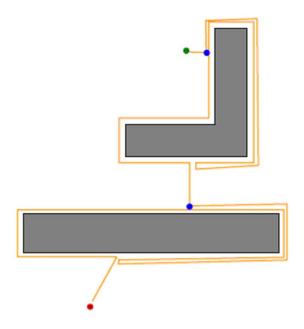
- Approaches
 - Reactive local approach
 - Decide a direction to go in based on goal and obstacles
 - Ignores vehicle dynamics
 - Usually deterministic formulation
 - Graph-based global approach
 - Graph extracted from workspace definition
 - Graph generated by random sampling of nodes and random connections between nodes
 - Optimal global approach
 - Find complete path to goal
 - Incorporate constraints
 - May need to model a certain way
 - Graph representation of environment
 - · Linear, nonlinear, mixed integer-linear
 - Probabilistic representation of configuration space (soft constraints)

- Reactive Bug Algorithms
 - Simplest form of path planning from implementation point of view
 - Assume very little knowledge of environment or robot state
 - Define a set of rules, prove reachability of goal
- Bug 0, 1, 2, Tangent Bug
 - Demonstrate how hard it is to find way around 2D environment even if optimality is of no concern
 - Require as little storage and sensing as possible

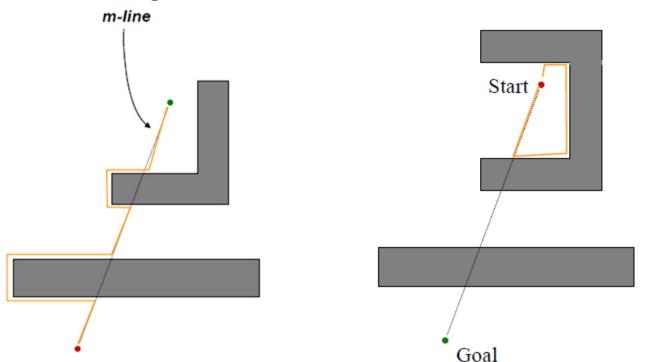
- Bug 0: Known goal and robot locations, can follow obstacle boundary
 - Always head directly to goal
 - If blocked, turn and follow obstacle until you can head directly to goal again
 - Doesn't always work



- Bug 1: Known location or robot and goal, can follow obstacle boundary
 - Head directly toward goal
 - When blocked, circumvent obstacle, remember closest point
 - Return to closest point and continue to goal
 - Guaranteed arrival
 - Can be slow



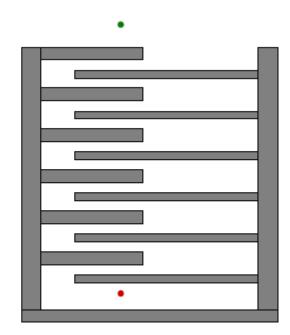
- Bug 2: Known location and goal, can follow obstacle boundary
 - Head toward goal, track start-goal line (m-line)
 - When blocked, circumvent obstacle until m-line
 - Try both directions if necessary
 - Continue to goal



Bugs Comparison

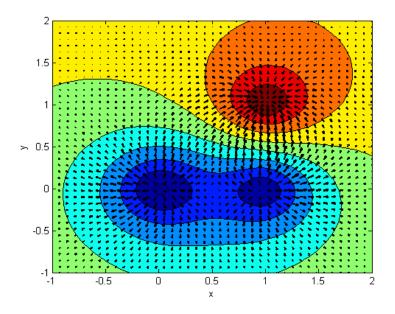
Bug 2 beats Bug 1

Bug 1 beats Bug 2



No clear winner, we need something more sophisticated

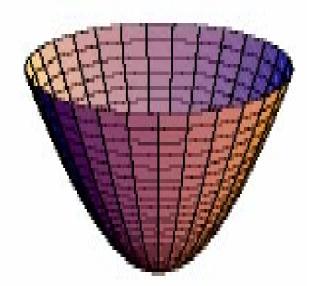
- o Potential Fields [Khatib, 1986]
 - A simple type of navigation function
 - A function that describes a direction of travel everywhere in the environment
 - Defines a potential field at every point in map
 - Robot descends potential field by moving in direction of negative gradient



- Potential Field Target function
 - Target attracts the vehicle
 - $footnote{\circ}$ Distance (ho) between vehicle, q, and target, q^g

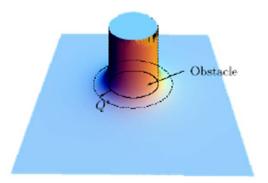
$$V_{att}(q) = K_{att} \rho(q, q^g)^2$$

Usually quadratic, can be anything



- Potential Fields
 - Obstacles repel the vehicle
 - ullet Strength based on shortest distance to obstacle O^i

$$V_{rep}(q) = K_{rep} \sum_{i=1}^{n} \frac{1}{\rho(q, O^i)^2}$$



o Often a maximum distance of influence is included

$$V_{rep}(q) = K_{rep} \sum_{i=1}^{n} \begin{cases} \left(\frac{1}{\rho(q, O^{i})} - \frac{1}{\overline{\rho}} \right)^{2} & \rho(q, O^{i}) < \overline{\rho} \\ 0 & \text{otherwise} \end{cases}$$

- Distance to obstacle function
 - Minimum of the distances to every point on the boundary of the obstacle

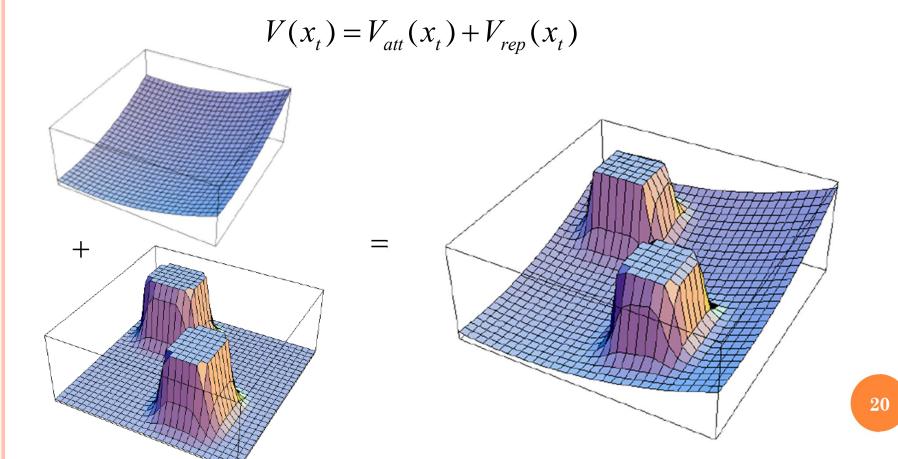
$$\rho(q, O^{i}) = \min_{c \in \delta O^{i}} \rho(q, c) = \min_{c \in \delta O^{i}} \left((q - c)^{T} (q - c) \right)^{1/2}$$

Gradient for distance to obstacle

$$\nabla \rho(q, c^*) = \frac{\left(q - c^*\right)}{\rho(q, c^*)}$$

Must find closest point to evaluate either

- Potential Fields
 - Potential field is combination of the two fields



Potential Fields

• Motion should then proceed in the direction of steepest descent of the potential

$$-\nabla V$$

$$= -\left(2K_{att}(q - q^g) - \sum_{i=1}^{n} \max\left(0, 2K_{rep}\left(\frac{1}{\rho(q, c^*)} - \frac{1}{\overline{\rho}}\right) \frac{(\rho - c^*)}{\rho(q, c^*)^3}\right)\right)$$

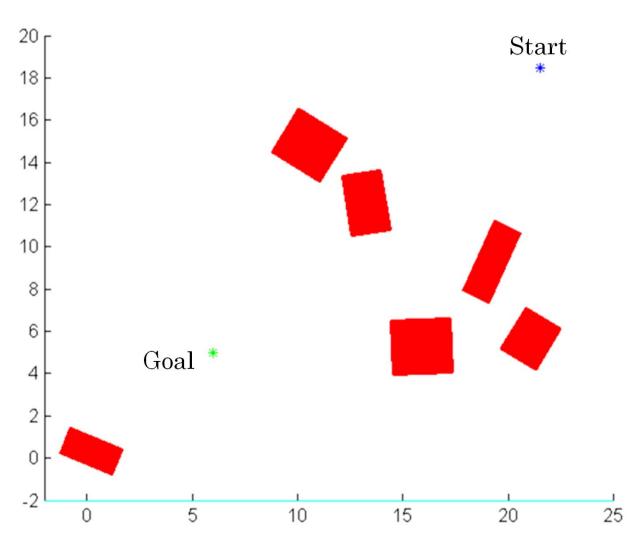


- Potential fields
 - Pros
 - Easy to implement
 - Fast to compute online
 - Intuitive
 - Can tailor how close to go to obstacles
 - Cons
 - Not optimal
 - No dynamic constraints considered
 - Local minima
 - Stability

- Potential fields example
 - Hardest part is defining the environment
 - Non overlapping obstacles
 - Define potential field only for plotting
 - Gradient at current location is needed for motion

- Potential Field Example
 - Robot is assumed to move in direction of steepest descent with speed equal to magnitude of gradient
 - Potential is created from three elements
 - Attractive potential to goal
 - Repulsive potential from closest point on obstacle, up to a range of 0.5 meters
 - Repulsive potential from center of obstacle, up to a range of 4 meters

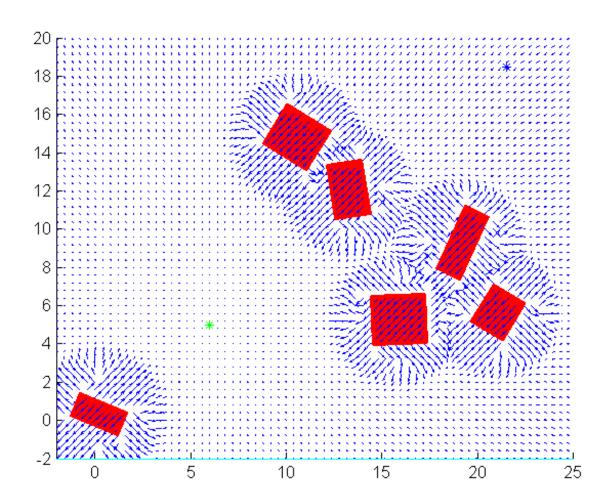
• The obstacle field



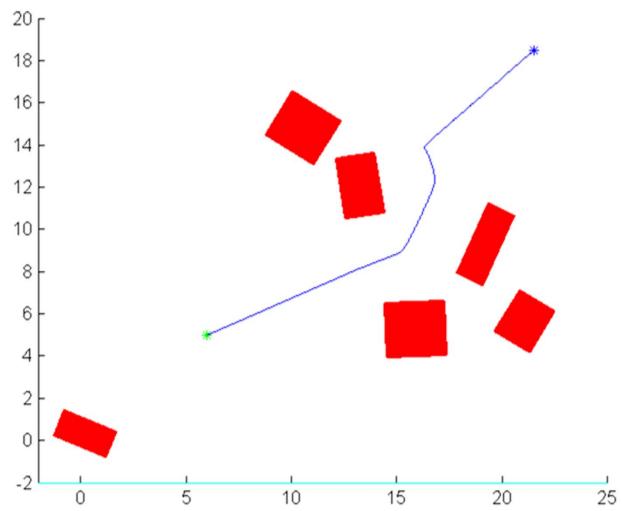
- Potential fields example
 - The potential field



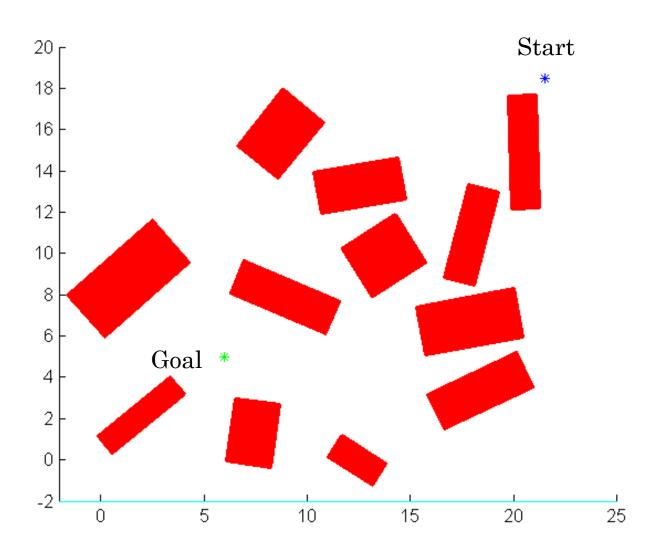
- Potential fields example
 - Gradient field



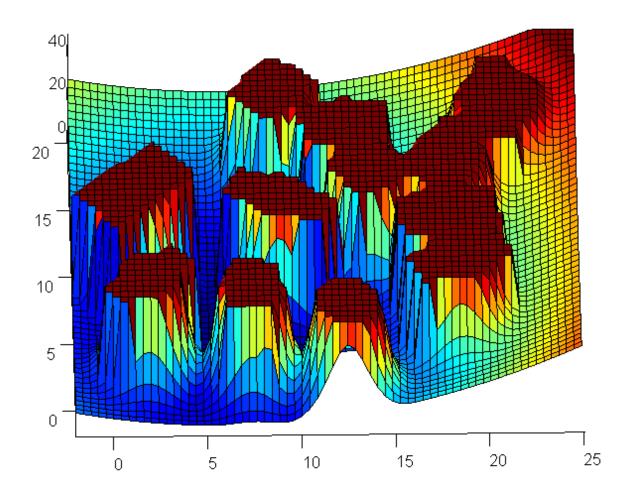
- Potential fields example
 - The trajectory



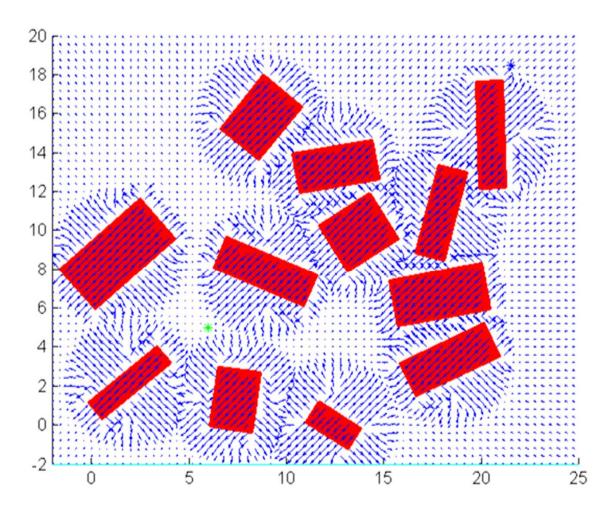
• The obstacle field



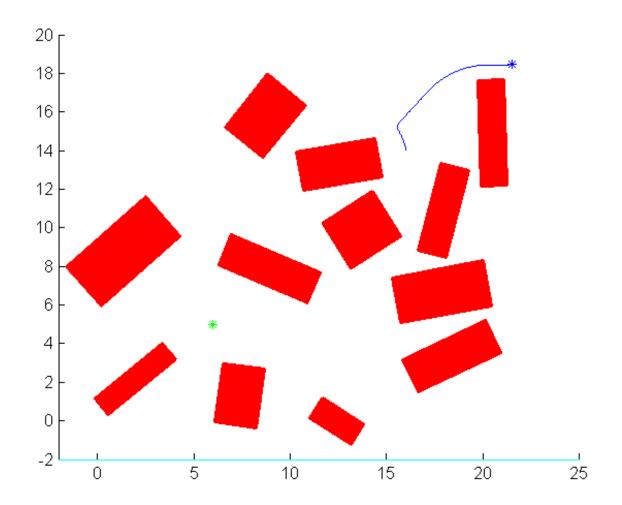
- Potential fields example
 - The potential field



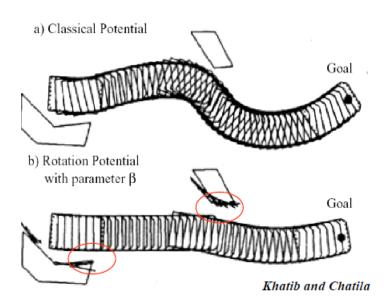
- Potential fields example
 - Gradient field



- Potential fields example
 - The trajectory



- Extended Potential Field
 - Can add effect to manage vehicle heading
 - A specific adaptation for driving robots
 - Rotation potential
 - Add a dependence on bearing to obstacle,
 - As bearing increases, reduce potential
 - No point worrying about what's behind you



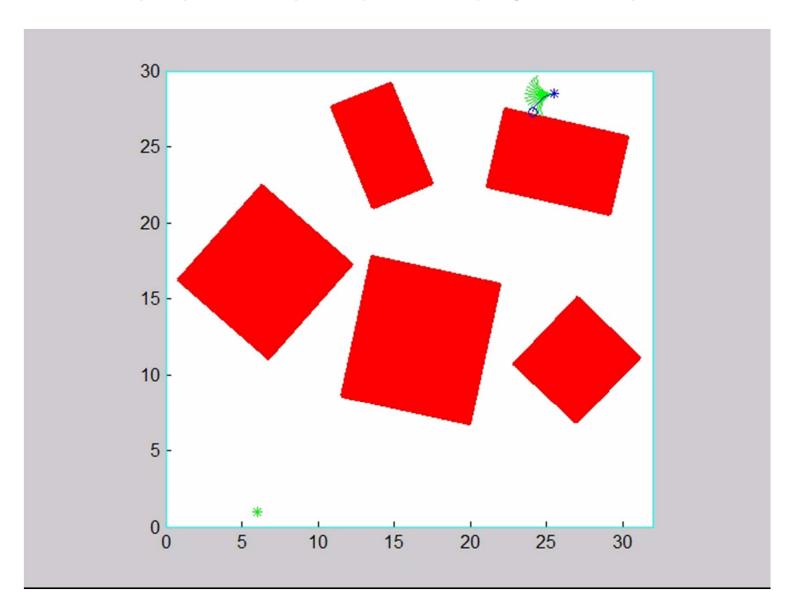
TRAJECTORY ROLLOUT

- Select *n* inputs to apply
 - Eg. Const velocity, 10 different rotation rates
- Propagate trajectory forward to time *t*+*T*
- Check each trajectory for collisions
- Score each trajectory based on
 - Progress to goal
 - Distance from obstacles
 - Similarity to previous choice
 - Preference between input choices
 - Etc...
- Pick best option and apply input
- Repeat as quickly as possible

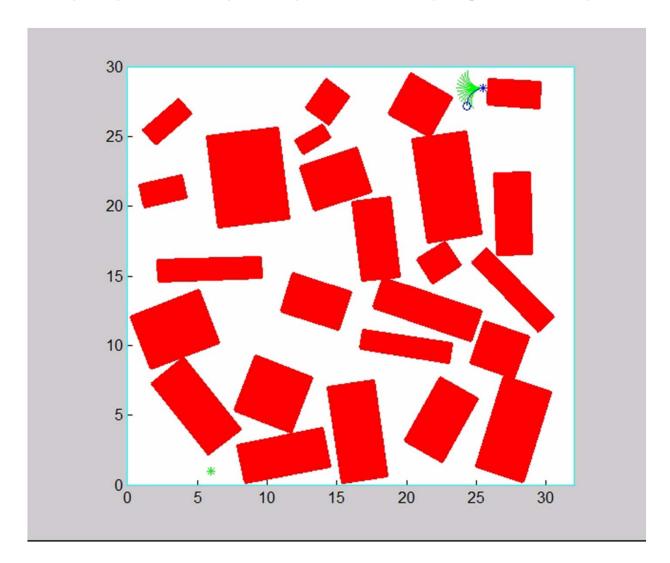
TRAJECTORY ROLLOUT

- Example
 - Two-wheeled robot
 - n = 11 trajectories
 - T = 1 second
 - v = 2 m/s
 - $\omega = [-2, 2] \text{ rad/s}$
 - Update rate = 5 Hz
- Environments with 5 well spaced and 25 not-so-well spaced obstacles

Trajectory Rollout – 5 Obstacles

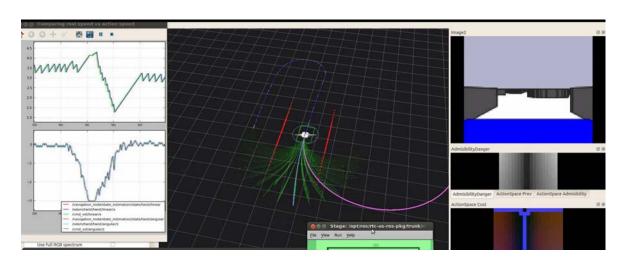


Trajectory Rollout – 25 Obstacles



DYNAMIC WINDOW APPROACH

- Identical to Trajectory Rollout except:
 - Add dynamic constraint on input choices
 - Max angular acceleration limits rotation rate options at each timestep
 - Same for max translational acceleration if varying velocity
- Both are implemented in ROS navigation stack
 - You've already used these



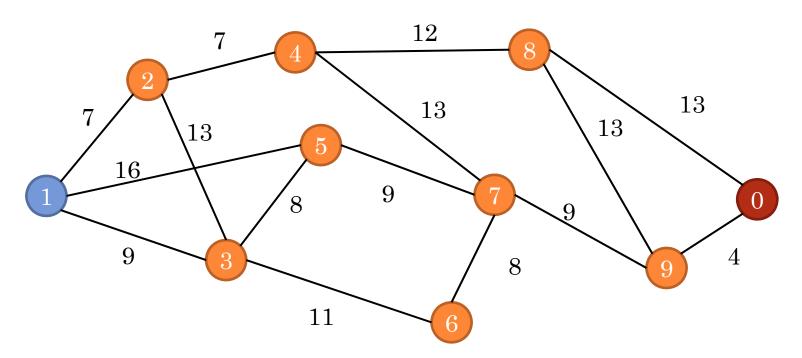
- Summary Reactive Planners
 - Fast computationally
 - Unless entire potential field must be computed (wavefront)
 - Simple control laws
 - Low computation requirements
 - Great for microcontroller based robots
 - Difficult to find globally optimal solutions
 - Do not consider dynamic constraints
 - Great for 2D, and for maneuverable robots

OUTLINE

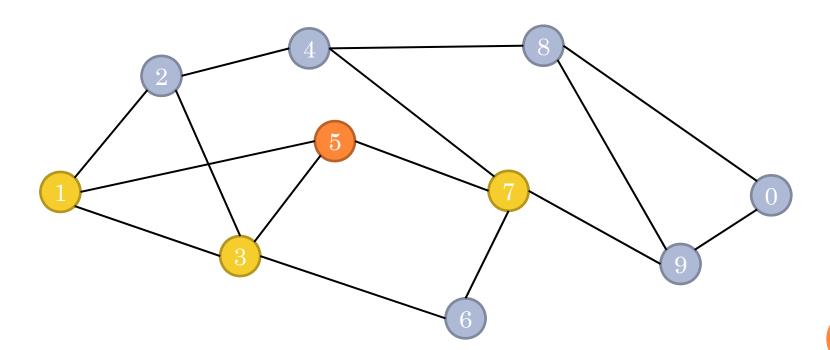
- Planning Concepts
- Reactive Motion Planning Algorithms
 - Bug
 - Potential Fields
 - Trajectory Rollout
- Graph Based Motion Planning
 - Finding paths on graphs
 - Wavefront
 - o Dijkstra, A*, D*
 - Generating Graphs from environments
 - o Visibility Graphs
 - Decompositions

- Graph-Based Planning
 - Suppose map can be represented by a set of nodes and edges along which the vehicle can travel
 - Can apply graph based shortest path solutions to find a path quickly
 - Optimal over graph
 - Ignore dynamics

- Definition of graph
 - Graph G of nodes N with edges E: G(N,E)
 - Cost of traveling from n_i to n_i : $c(n_i, n_j)$
 - $c(n_1, n_3) = 9$

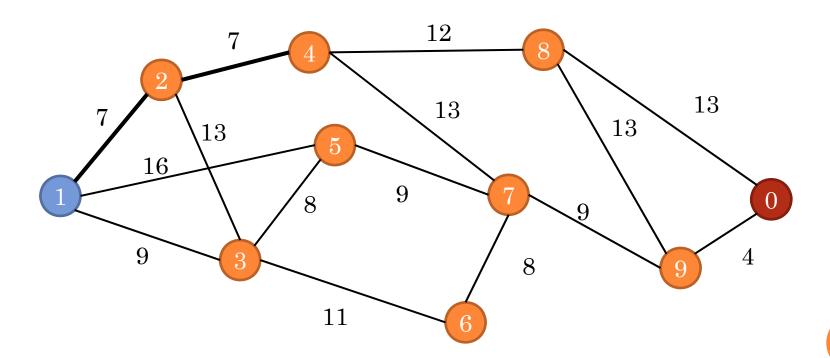


- Neighbouring nodes
 - Set of nodes adjacent to n: A(n)

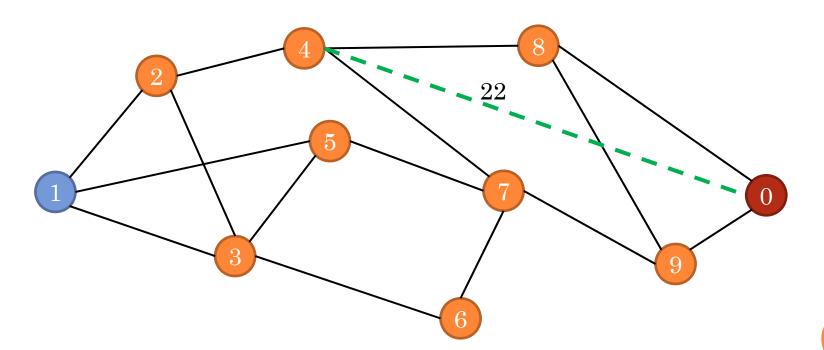


- Current cost
 - Minimum cost of getting to node n: g(n)

$$g(n_4) = 14$$



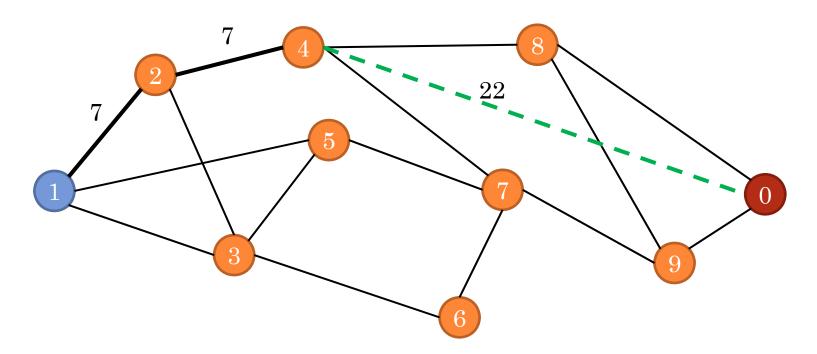
- Cost to go
 - Cost to go heuristic from node n to the end: h(n)
 - $h(n_4) = 22$ for straight line distance metric
 - Must always be less than or equal to true cost to go



- Cost lower bound
 - Estimated cost of shortest path through node *n*:

$$f(n) = g(n) + h(n)$$

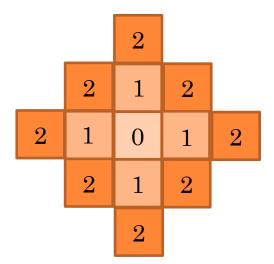
$$of(n_4) = 14 + 22 = 36$$



- Finding the shortest path over a graph
 - Breadth first search
 - Start at starting node
 - Find all nodes that can be reached in one step (neighbours)
 - For each neighbour in previous step, find all of its neighbours, and repeat until all nodes (or end node) has been reached
 - Only works for edges of equal length
 - Depth first search
 - Start at starting node
 - Pick an available node based on some criteria (longest, closest to goal)
 - Proceed as far as possible, then backtrack
 - Continue until all nodes have been visited
 - Only works for edges of equal length

- Wavefront
 - If the graph produced has unit cost edges, breadth first search can be used
 - Resembles the propagation of a wave through graph
 - Works well in 2D, 3D for reasonable discretizations
 - Resulting cost map is monotonic
 - Leads to shortest path from *any point* in the occupancy grid to the final position
 - Or from current position to every point in the graph

- Underlying graph structure for wavefront
 - Add edges of unit cost by discretizing free space with an occupancy grid



2	2	2	2	2
2	1	1	1	2
2	1	0	1	2
2	1	1	1	2
2	2	2	2	2

- Define two sets
 - Open Set: O
 - Set of nodes currently under consideration
 - Initialize with start node n_{θ}
 - o Implemented as a queue, stack or priority queue
 - Queue breadth first search
 - Stack depth first search
 - Priority queue Dijkstra's and A*
 - Top node is first node in queue or stack form of open set
 - Best node is first node in priority queue open set
 - Closed Set: C
 - All nodes for which processing is complete

- Breadth first search algorithm
 - While top node is not goal
 - Move top node from open set to closed set
 - Store node, back pointer to previous node and current cost

$$f(n_{top}) \le f(n), \forall n \in O$$

- Add all neighbouring nodes of top node not currently in either set to the bottom of the open set
 - Store node, current cost and back pointer to top node

$$O = \{O, A(n_{top}) \setminus (O \cup C)\}$$

• For each node already in the open set, update current cost and back pointer if new path is shorter

for all
$$n \in O \cap A(n_{top})$$

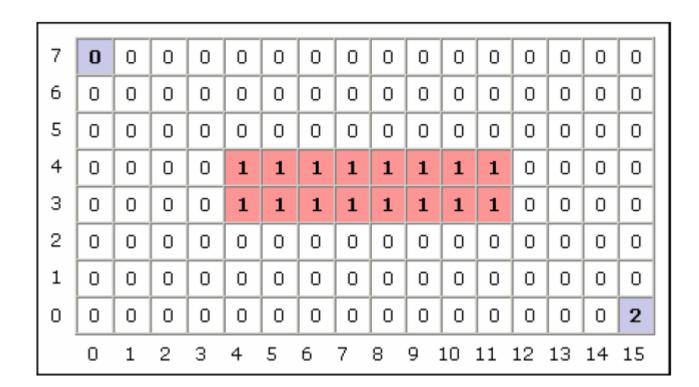
if
$$(g(n_{top}) + 1 < g(n))$$

backpoint to n_{top} , update g(n)

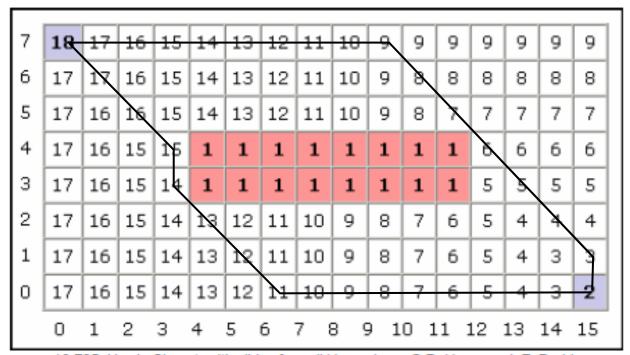
Wavefront Algorithm

- Initialization
 - Create open set of positions, which includes only the end point, assign a cost of 0
 - Create a closed set of position, which includes all obstacles, assign a cost of infinity
- Main loop
 - First position of open set becomes active
 - Move to closed set
 - Identify all neighbours that can be reached and are not already in open or closed sets
 - Update each neighbour in open set with lower of the cost through current node or previous best cost
 - Assign each new neighbour a cost of the active position
 +1
 - Add all new neighbours to the end of the open set
 - Until open set is empty

- Wavefront
 - Example



- Wavefront
 - Example



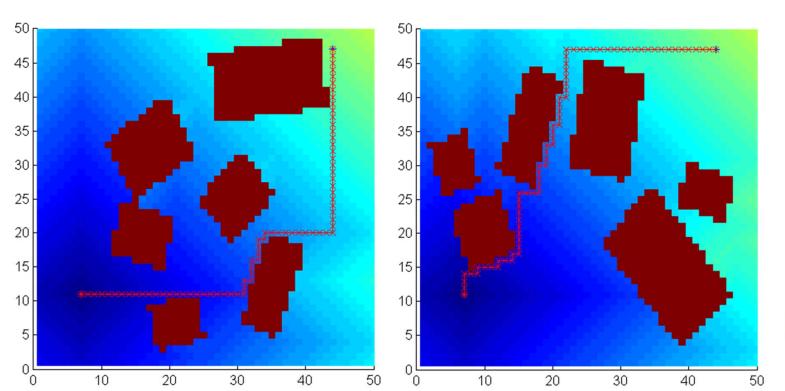
16-735, Howie Choset, with slides from Ji Yeong Lee, G.D. Hager and Z. Dodds

- Wavefront
 - 50x50 grid (converted to a graph and solved using breadth first search)
 - o Link to video

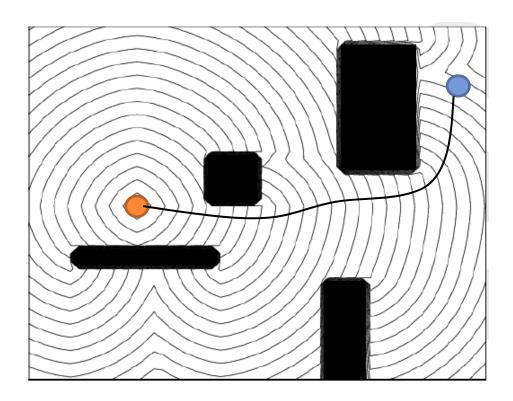


Wavefront

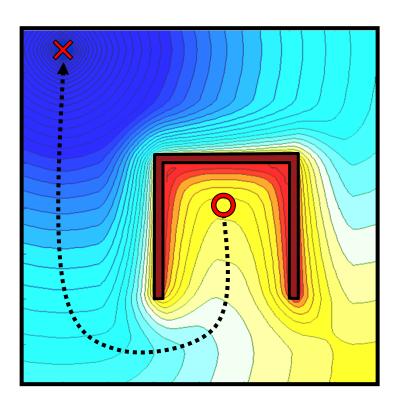
- The vehicle then identifies a path by always selecting a position that reduces the cost to goal.
 - o Can be performed locally, wavefront is monotonic
 - Many possible trajectories result



- Fast Marching
 - Can extend the basic wavefront algorithm to use more of a continuum based approach



- Fast Marching
 - Can define viscosity of flow around obstacles
 - Results in a smooth path that does not hug obstacle corners



- Breath-First, Wavefront and Fast Marching
 - Pros:
 - Monotic, always find path to goal if it exists
 - Easy to implement
 - Cons:
 - Computes path from every point in planning space to end goal
 - Not very efficient, but fast enough for 2D
 - Must treat environment as discretized graph with unit step edges (occupancy grid)
 - Approximation always leads to sub-optimality in resulting path

- Finding the shortest path over a graph
 - Dijkstra's algorithm
 - Start from starting node
 - Expand all links out of the node with lowest current cost
 - Find the next lowest current cost node, repeat previous step
 - Stop when end goal is closed, no other path can be shorter
 - A* Algorithm
 - Modified version of Dijkstra's
 - Rely on edge costs and cost to go heuristic
 - Pick most promising node at each step
 - Cost to go heuristic should never be greater than true cost
 - Can run all these algorithms from current location forward or from end point backward

- Dijkstra's algorithm
 - While best node is not goal
 - Move best node from open set to closed set
 - Store node, back pointer to previous node and current cost

$$f(n_{best}) \le f(n), \forall n \in O$$

- Add all neighbouring nodes of best node not currently in either set to the open set
 - Store node, current cost and back pointer to best node

$$O = \{O, A(n_{best}) \setminus (O \cup C)\}$$

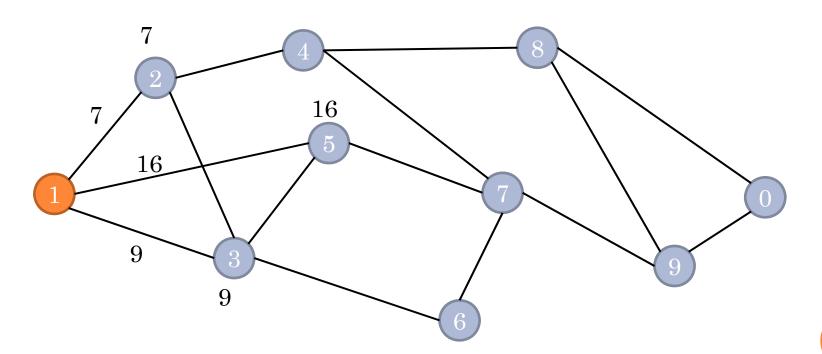
• For each node already in the open set, update current cost and back pointer if new path is shorter

for all
$$n \in O \cap A(n_{best})$$

if $(g(n_{best}) + c(n_{best}, n) < g(n))$
backpoint to n_{best} , update $g(n)$

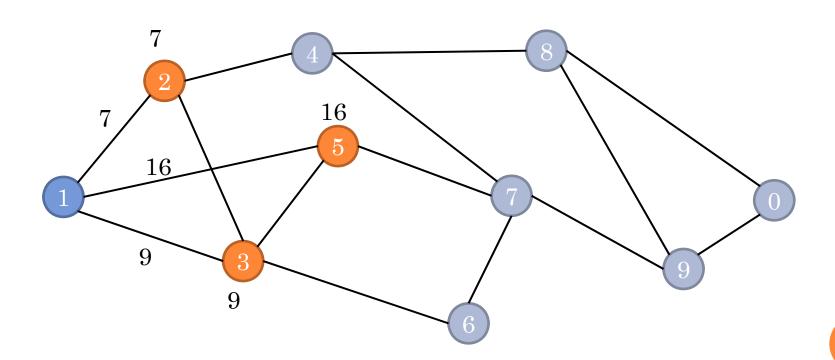
- o Dijkstra's Search Algorithm
 - Take best node in O and move to C
 - Find all neighbours of best node, add to O in order of current cost

О	С
(1,-,0)	



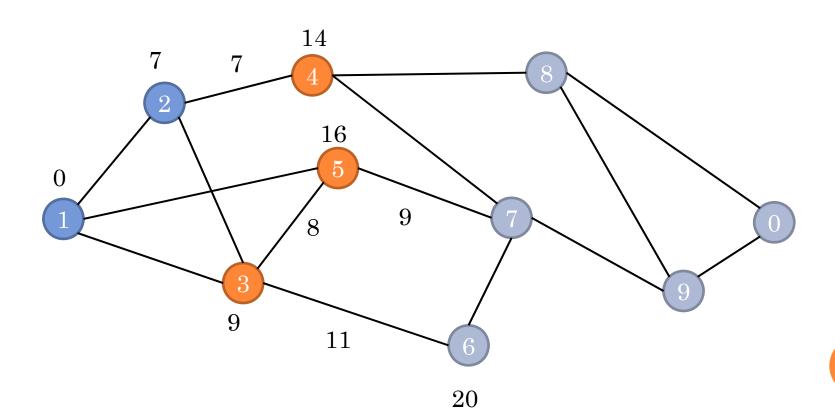
- o Dijkstra's Search Algorithm
 - If a neighbour node is already in O, keep only shortest path to it

О	С
(2,1,7)	(1,-,0)
(3,1,9)	
(5,1,16)	



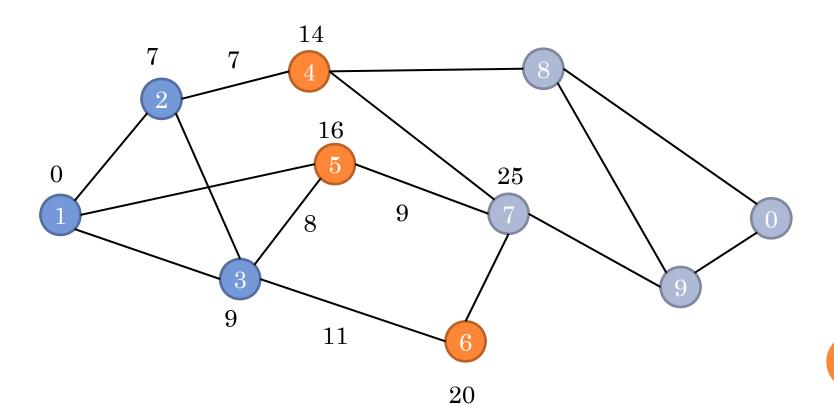
- o Dijkstra's Search Algorithm
 - Repeat for each node in O

О	С
(3,1,9)	(1,-,0)
(4,2,14)	(2,1,7)
(5,1,16)	



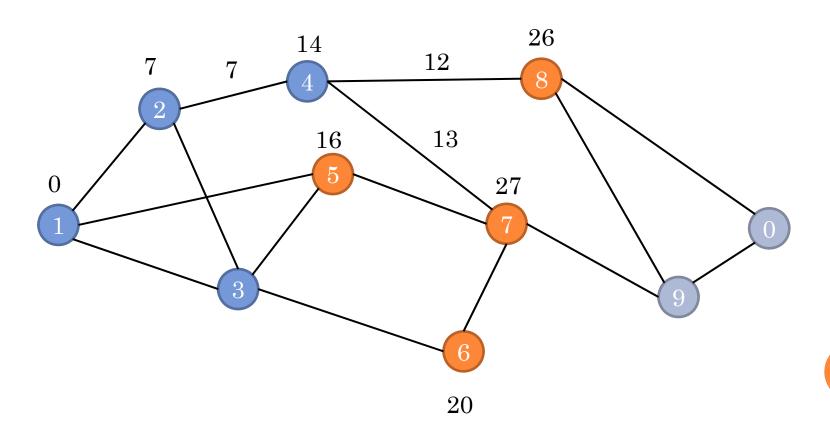
- o Dijkstra's Search Algorithm
 - Repeat for each node in O

О	C
(4,2,14)	(1,-,0)
(5,1,16)	(2,1,7)
(6,3,20)	(3,1,9)



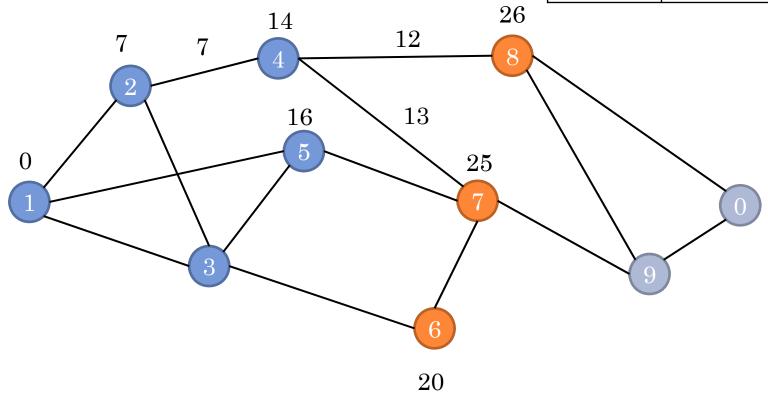
- o Dijkstra's Search Algorithm
 - Repeat for each node in O

О	С
(5,1,16)	(1,-,0)
(6,3,20)	(2,1,7)
(8,4,26)	(3,1,9)
(7,5,27)	(4,2,14)



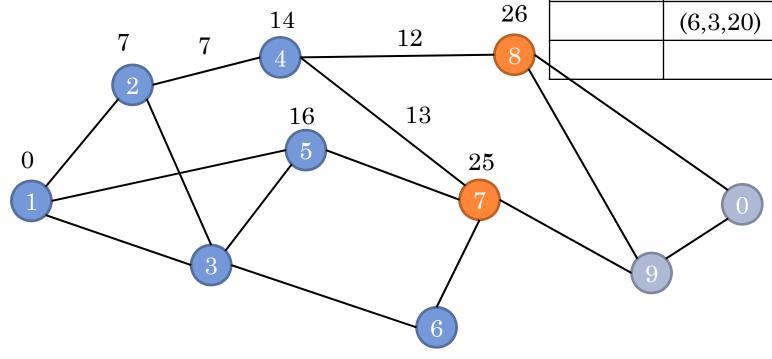
- o Dijkstra's Search Algorithm
 - Repeat for each node in O

О	С
(6,3,20)	(1,-,0)
(7,5,25)	(2,1,7)
(8,4,26)	(3,1,9)
	(4,2,14)
	(5,1,16)



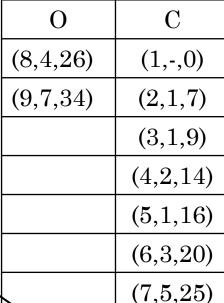
- o Dijkstra's Search Algorithm
 - Repeat for each node in O

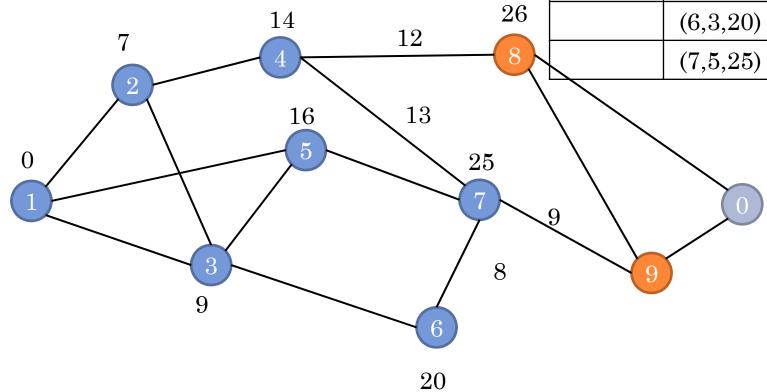
O	C
(7,5,25)	(1,-,0)
(8,4,26)	(2,1,7)
	(3,1,9)
	(4,2,14)
	(5,1,16)
	(6,3,20)
_	



20

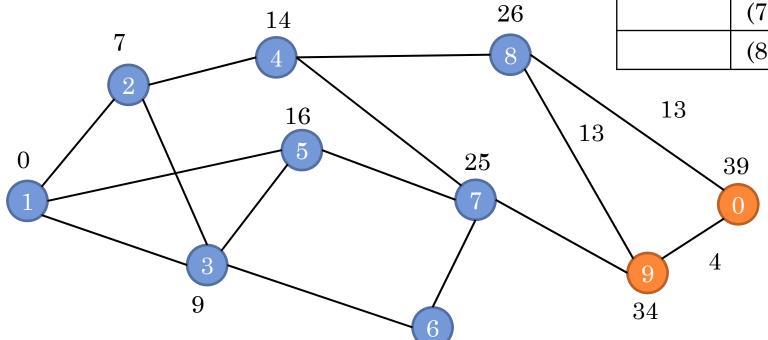
o Dijkstra's Search Algorithm





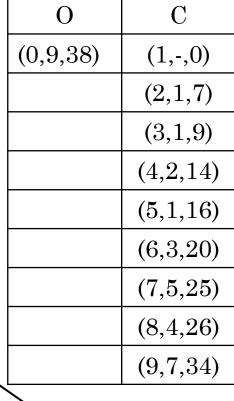
- o Dijkstra's Search Algorithm
 - Stop when end node is current best node in open list

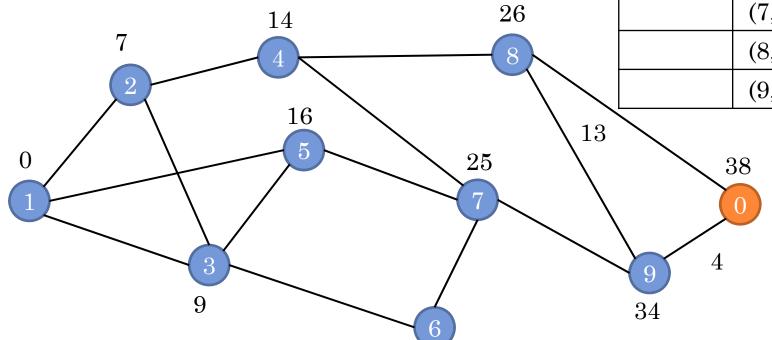
О	C
(9,7,34)	(1,-,0)
(0,8,39)	(2,1,7)
	(3,1,9)
	(4,2,14)
	(5,1,16)
	(6,3,20)
	(7,5,25)
	(8,4,26)



20

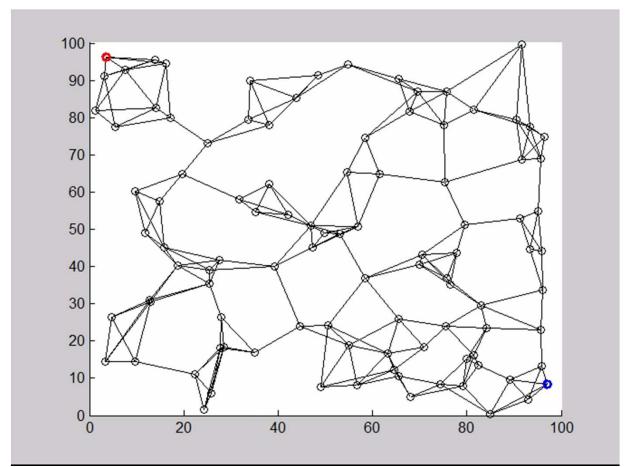
- o Dijkstra's Search Algorithm
 - Stop when end node is current best node in open list





20

- o Dijkstra's Example
 - 100 nodes, all connected to 4 closest neighbours



- Finding the shortest path over a graph
 - Dijkstra's algorithm
 - Start from starting node
 - Expand all links out of the node with lowest current cost
 - Find the next lowest current cost node, repeat previous step
 - Stop when end goal is closed, no other path can be shorter
 - A* Algorithm
 - Modified version of Dijkstra's
 - Rely on edge costs and cost to go heuristic
 - Pick most promising node at each step
 - Cost to go heuristic should never be greater than true cost
 - Can run all these algorithms from current location forward or from end point backward

- A* algorithm
 - While best node is not goal
 - Move best node from open set to closed set

$$f(n_{best}) \le f(n), \forall n \in O$$

- Store node, back pointer to previous node, current cost and lower bound cost
- Add all adjacent nodes not currently in either set to the open set
 - Store node, current cost, lower bound cost and back pointer to n_{best}

$$O = \{O, A(n_{best}) \setminus (O \cup C)\}$$

• For each node already in open set, update current cost, lower bound cost and back pointer if new path is shorter

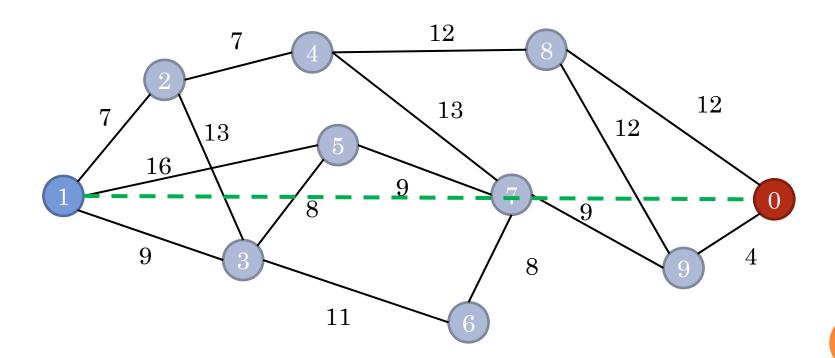
for all
$$n \in O \cap A(n_{best})$$

if
$$(g(n_{best}) + c(n_{best}, n) + h(n) < f(n))$$

backpoint to n_{best} , update f(n), g(n)

О	C
(1,-,33)	-

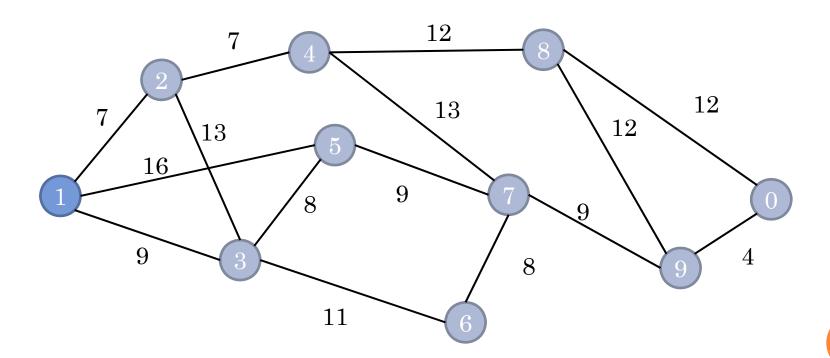
- o Step 1
 - Add n_1 to O with a lower bound cost of 33



О	C
	(1,-,0)

• Step 2

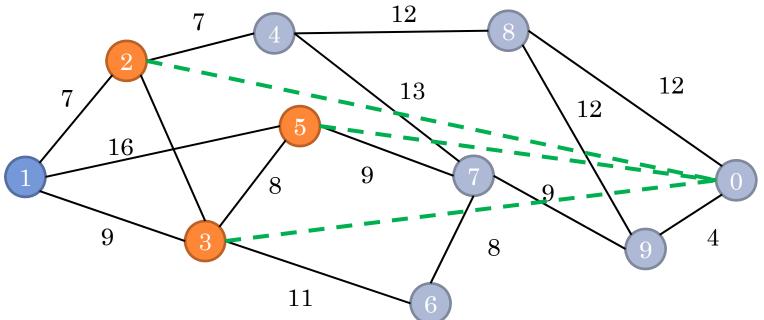
• Take best node in O, move it to C, store current cost and back pointer (0, Null in this case)



• Step 3

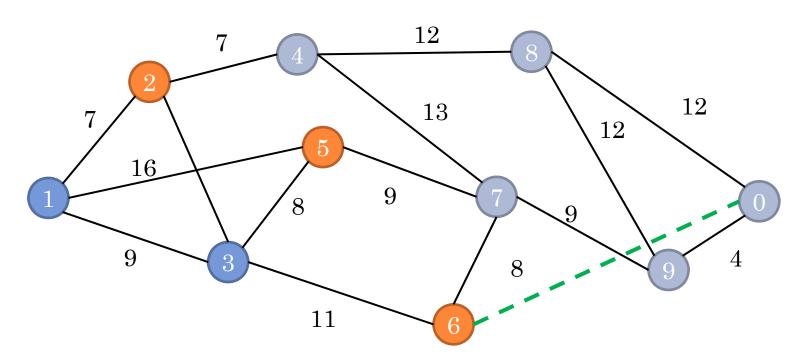
• Add all nodes accessible from best node (1) to 0, ordered based on cost estimate. If node is already in O, update cost estimate and back pointer

О	С
(3,1,34)	(1,-,0)
(5,1,35)	
(2,1,36)	



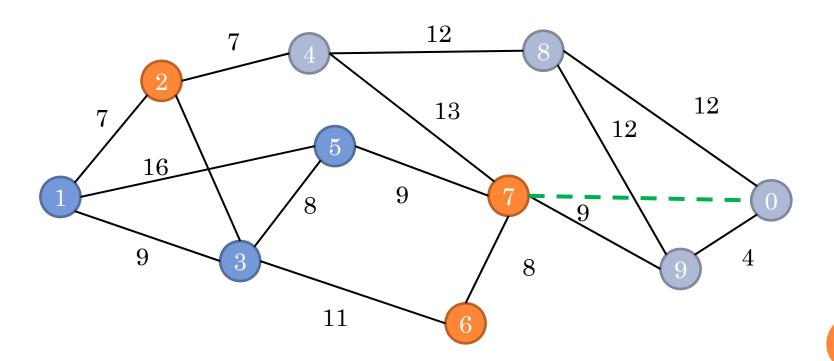
- Step 4: Repeat steps 2 and 3
 - Add n_6 to θ
 - Cost of n_1 - n_3 - n_5 is greater than n_1 - n_5 , keep old cost

О	С
(5,1,35)	(1,-,0)
(2,1,36)	(3,1,9)
(6,3,38)	



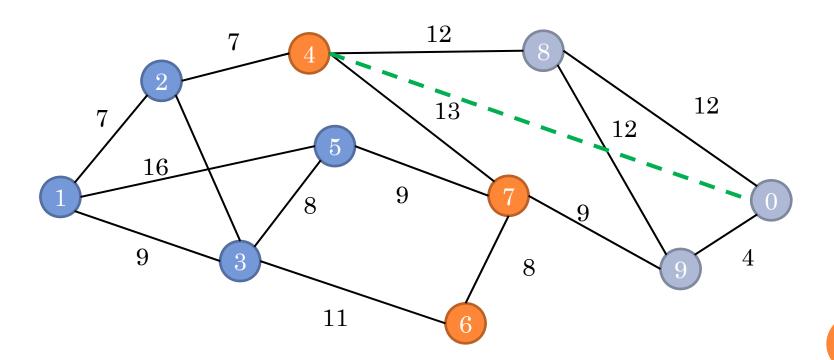
- Step 5
 - Add n_7 to θ

О	С
(2,1,36)	(1,-,0)
(7,5,37)	(3,1,9)
(6,3,38)	(5,1,16)



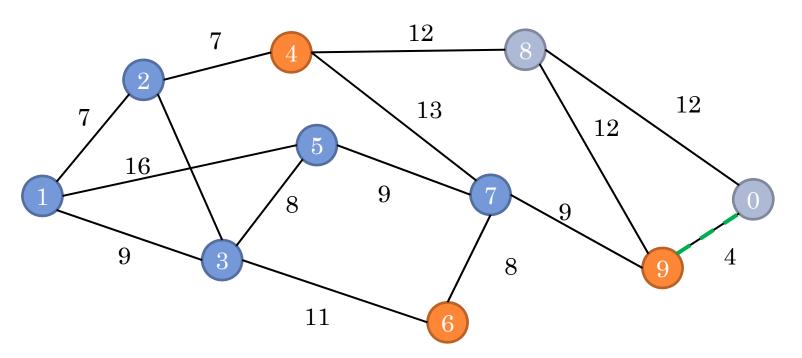
- Step 6
 - Add n_4 to θ

О	С
(7,5,37)	(1,-,0)
(6,3,38)	(3,1,9)
(4,2,39)	(5,1,16)
	(2,1,7)



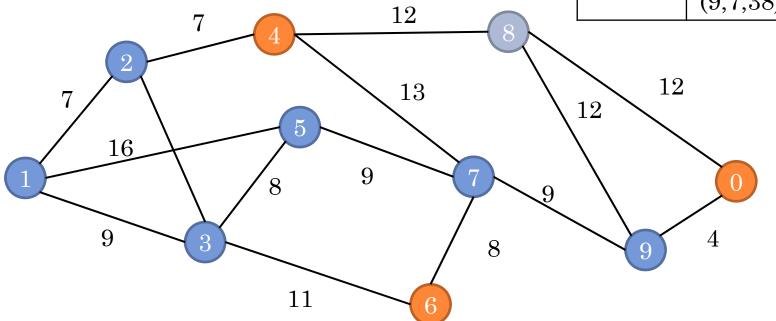
- Step 7
 - Add n_9 to θ

О	\mathbf{C}
(9,7,38)	(1,-,0)
(6,3,38)	(3,1,9)
(4,2,39)	(5,1,16)
	(2,1,7)
	(7,5,25)



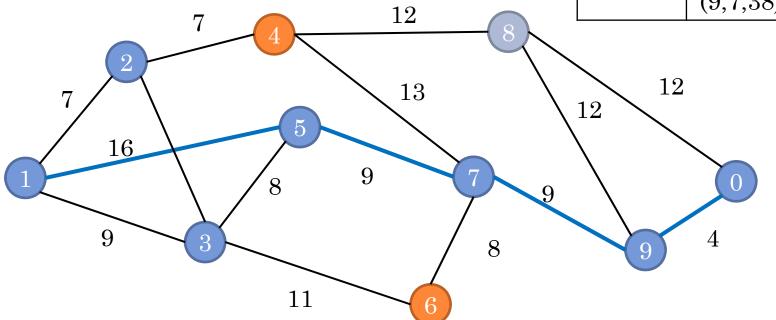
- o Step 8
 - Add n_{θ} to θ

O	С
(0,9,38)	(1,-,0)
(6,3,38)	(3,1,9)
(4,2,39)	(5,1,16)
	(2,1,7)
	(7,5,25)
	(9,7,38)

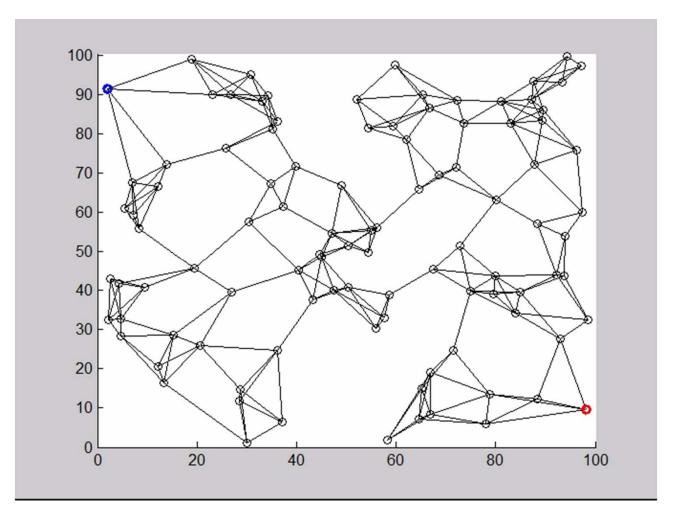


- o Step 9
 - Done, node 0 is best node in open list

O	C
(0,9,38)	(1,-,0)
(6,3,38)	(3,1,9)
(4,2,39)	(5,1,16)
	(2,1,7)
	(7,5,25)
	(9,7,38)



- A* Example:
 - 100 nodes, all connected to 4 closest neighbours

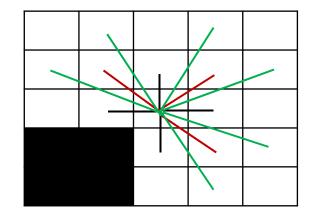


OUTLINE

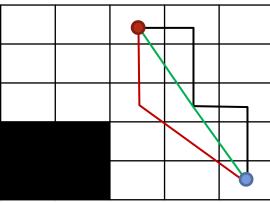
- Planning Concepts
- Reactive Motion Planning Algorithms
 - Bug
 - Potential Fields
 - Trajectory Rollout
- Graph Based Motion Planning
 - Finding paths on graphs
 - Wavefront
 - o Dijkstra, A*, D*
 - Generating Graphs from environments
 - o Visibility Graphs
 - Decompositions

- How to make a map into a graph
 - Deterministically
 - o Occupancy Grid-based Graph
 - o Visibility Graph
 - Cell Decomposition
 - o Voronoi Diagram
 - Constrained Delaunay Triangulation
 - Randomly
 - Probabilistic roadmaps (PRMs)

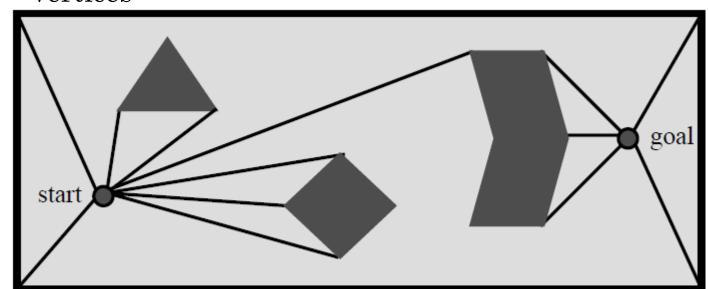
- Occupancy grid to graph
 - Each cell is a node
 - Can connect to 4,8 or 16 nearest neighbours if not occupied
 - Edge length either 1 unit or true distance
 - Wavefront or Dijkstra/A*



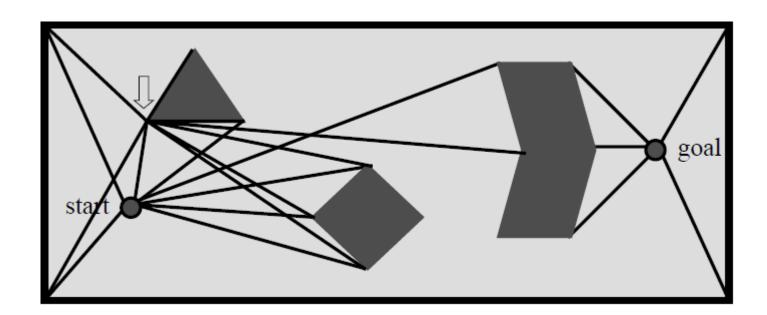
- The more connections, the harder the search, but the more direct the path
 - Memory limitations
 - Time complexity
 - For small 100x100 grid
 - 10,000 nodes
 - o 20,000, 40,000, 80,000 edges



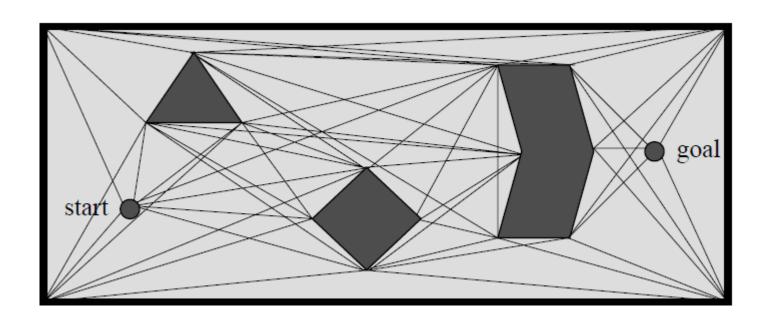
- Visibility Graph
 - If 2D map is defined as a polygon with polygonal obstacles (holes)
 - Connect all vertices in map to create a visibility graph
 - Line of sight between each vertex pair
 - Remove all edges that intersect obstacles
 - Step 1: Connect start and end point to all visible vertices



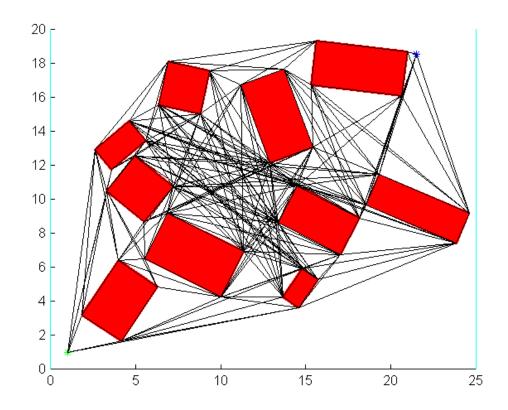
- Visibility graph
 - Step 2: For each obstacle vertex reached in step 1, add all its connections, including connections along obstacle edges



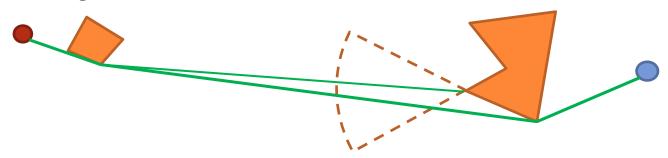
- Visibility Graph
 - Step 3: Repeat until no new edges are added



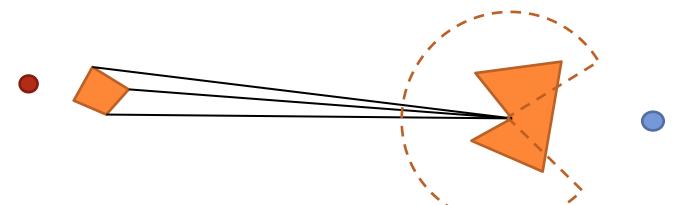
- Example of Visibility Graph
 - Brute force: O(n³)
 - For each connection, check n edge intersections
 - 10 Convex obstacles
 - 218 links
 - 4 seconds



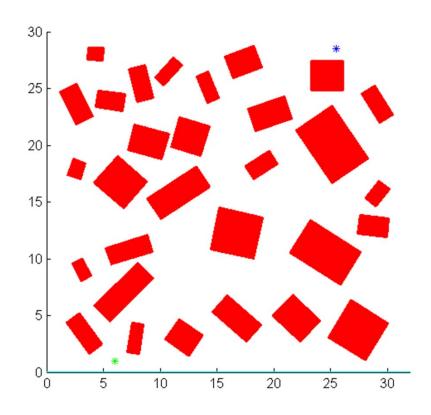
- Visibility graph
 - Can eliminate many unnecessary edges
 - All edges that head into obstacle
 - Nodes in regions defined by convex nodes can also be ignored



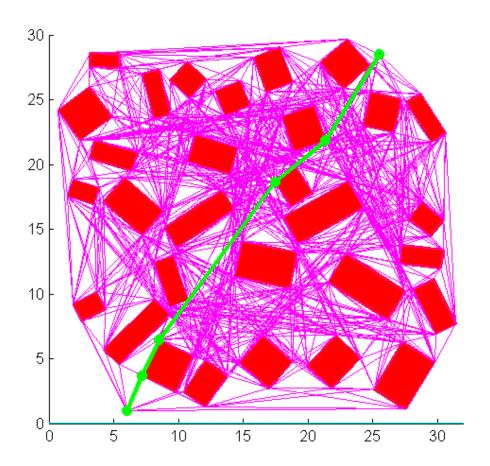
• As a result, concave obstacle nodes can be ignored



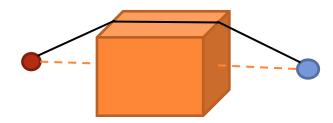
- Example 2D path planning
 - 30 Obstacles
 - Guaranteed shortest path
 - Many collision checks
 - Connecting all nodes requires 7503 edge collision checks
 - Resulting network has
 - 122 nodes
 - 976 edges



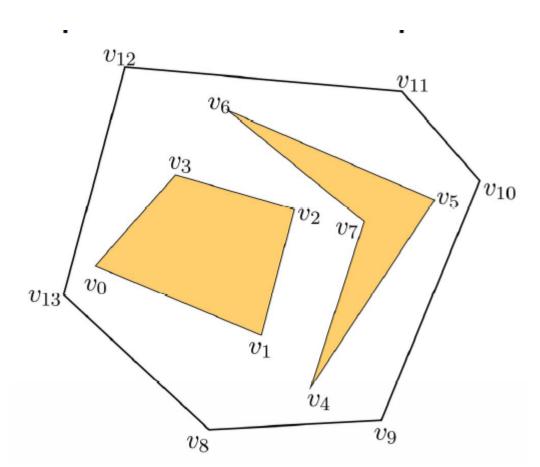
- Example 2D path planning
 - Brute Force Runtime: 30 s



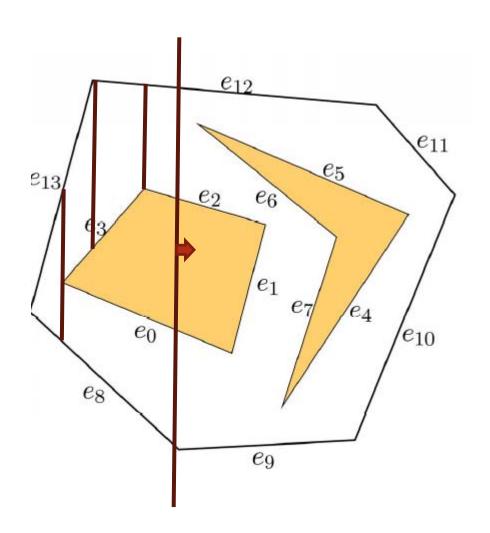
- Visibility Graph
 - Pros
 - Guaranteed to find shortest path
 - Fairly quick in 2D
 - Cons
 - Passes too close to obstacles
 - Requires nodes and edges view of the world
 - Not possible in 3D



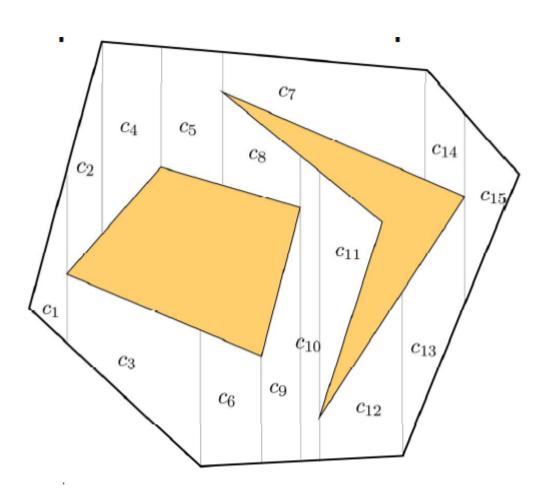
- Trapezoidal decomposition
 - 2D map cut vertically at each obstacle vertex



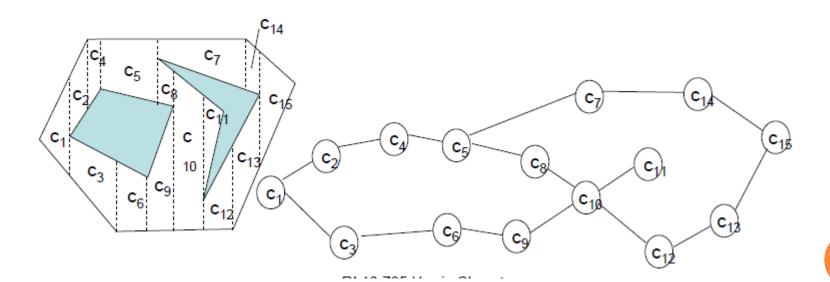
Trapezoidal Decomposition



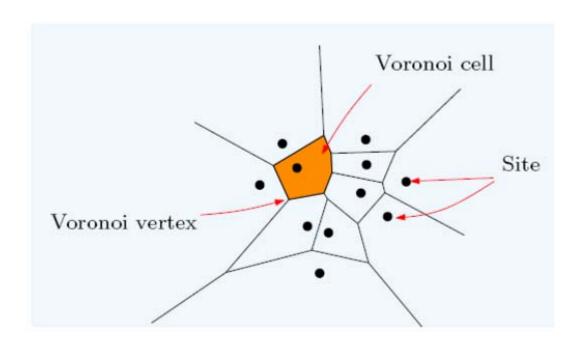
Trapezoidal Decompositon



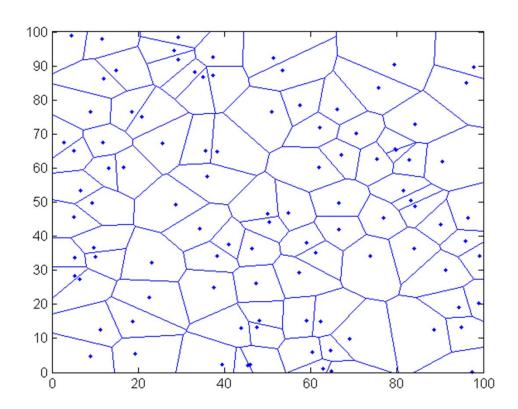
- Topological graph from decomposition
 - Create map by connecting adjacent open cells
 - Adjacency graph
 - Can connect cell centroids to form path (may intersect obstacles)
 - Distance between cells is unclear



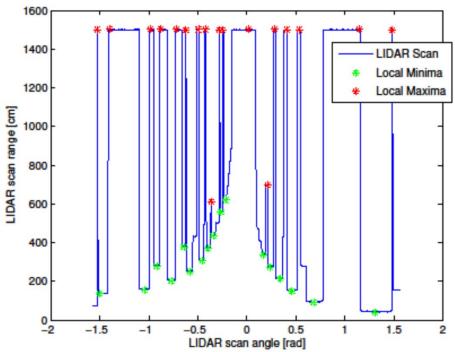
- Voronoi Diagram
 - An alternative that does not find the shortest path, but perhaps the "safest" path
 - Each edge is equidistant between two points
 - Results in paths that are furthest away from points



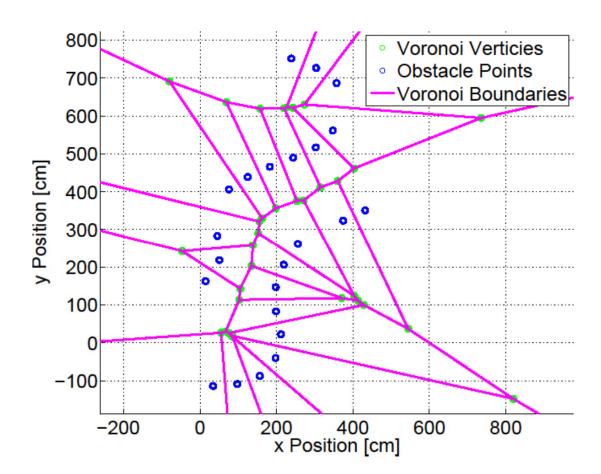
- Voronoi diagrams in Matlab
 - Very fast algorithm, relies on qhull software
 - Cannot handle non-point obstacles



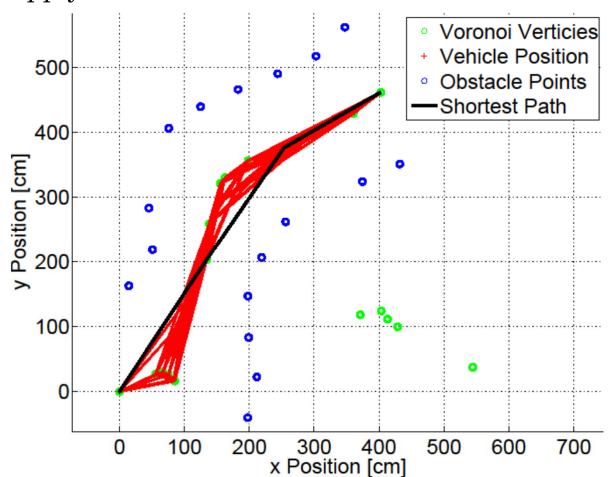
- Voronoi Diagrams in Robot Racing Planner
 - Detect pylons through peak detect algorithm



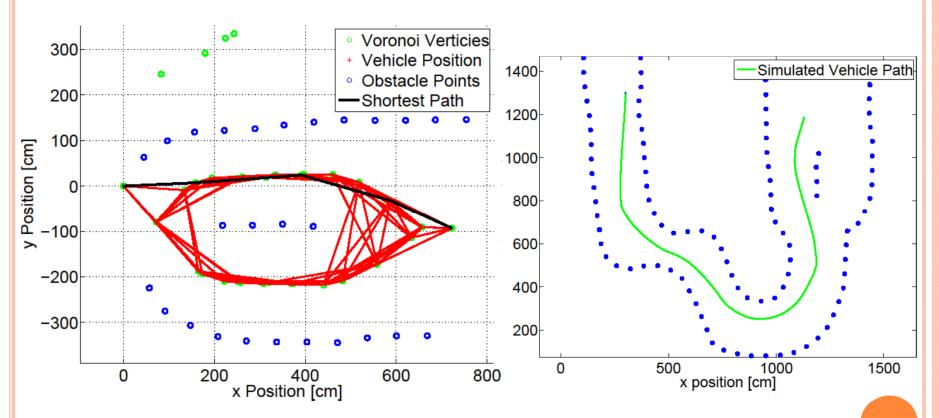
- Voronoi Diagrams in Robot Racing Planner
 - Create Voronoi diagram, connect graph, apply A*



- Voronoi Diagrams in Robot Racing Planner
 - Connect graph using bounding box on obstacles, apply A*



- Voronoi Diagram in Robot Racing Planner
 - Simulation results



International Autonomous Robot Racing Competition 2010

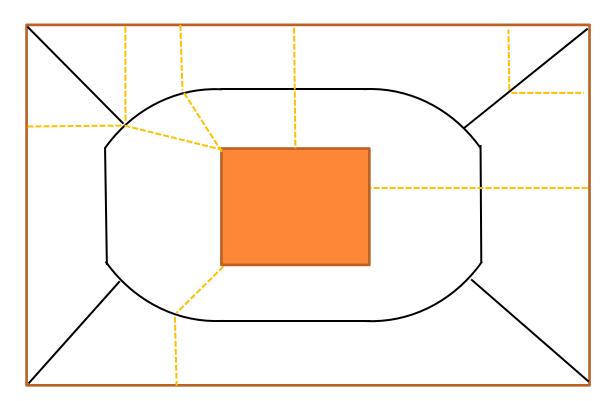
Outdoor Testing

Demo 2

Static Obstacle Avoidance using the Trajectory Rollout Algorithm

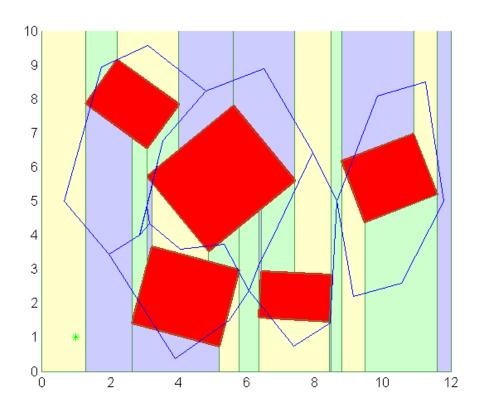
EXTRA SLIDES

- Generalized Voronoi Diagram
 - Uses distance to object function (same as potential fields)
 - Find equidistant points between two obstacles
 - For polygonal obstacles, results in lines, ellipse segments

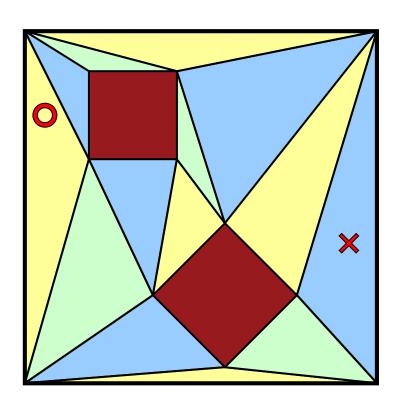


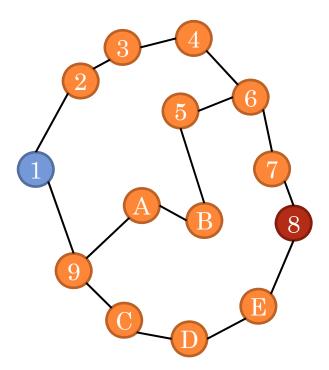
Example

- Trapezoid centroids connected in a graph
- Graph represents connectivity of space, not navigable paths, utility of shortest path is therefore dubious

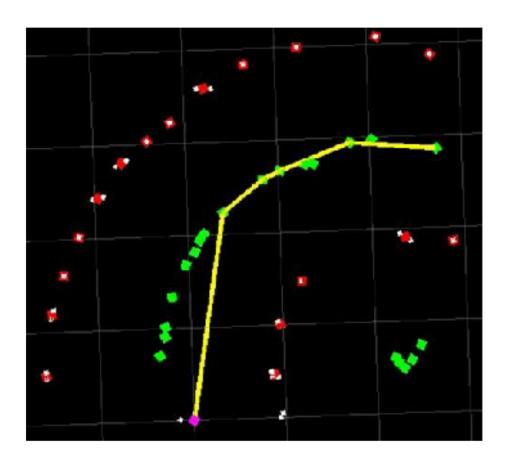


- Constrained Delaunay Triangulation
 - Complex algorithm, not often used, but interesting





- Voronoi Diagram in Robot Racing Planning
 - Competition results, success!



• D*

- Dynamic A* algorithm
- Adapted to be finite horizon, replan locally with new link information
- Intended for robots that uncover new information as they travel
- Solve for a path from start to end using A* from end to start
- If new path length info becomes available
 - Affected nodes are marked Raised
 - All downstream nodes also marked raised, until all nodes that can be affected by the change are marked
 - New costs are assigned using the usual update, except that if a node cost can be reduced, it is marked Lowered, and all upstream nodes are improved
- The result is a sequences of downstream and upstream waves updating the costs for only those nodes affected by the new information
- Anthony Stentz "The Focussed D* Algorithm for Real-Time Replanning", In Proceedings of the International Joint Conference on Artificial Intelligence, August 1995
 - See Choset et al. Appendix H for summary