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 Planning Concepts

 Reactive Motion Planning Algorithms
 Bug
 Potential Fields
 Trajectory Rollout

 Graph Based Motion Planning
 Finding paths on graphs

 Depth First, Breadth First, Wavefront
 Dijkstra, A*

 Generating Graphs from environments
 Visibility Graphs
 Decompositions 3
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 Probabilistic Graph Based Planning
 Complex Planning Examples
 Probabilistic Roadmaps
 PRM Algorithm
 Collision Detection
 Sampling Strategies
 RRT Algorithm

 Optimization Based Planning
 Linear Programming
 Nonlinear Programming
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 Motion Planning Terminology
 Work space

 The environment the vehicle finds itself in
 Comes from industrial robotics
 2-3D physical world 
 Can be defined in a number of ways

 Polygons, Surfaces, Occupancy grids
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 Motion Planning Terminology
 Configuration Space

 Complete planning space of robot
 For two linkage robot, workspace is 2D space of joint angles, 

minus black areas which are positions blocked by obstacles
 Configuration space is much different, defined by allowable 

states in white, unallowable in grey
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 Motion Planning Terminology
 Configuration space for a two wheeled non-point robot

 Can be insufficient to simply expand the obstacle
 Can find x,y path but must also identify heading to travel in
 Constraints on velocity not represented here 7
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 Objectives
 Predefined target configuration

 Guaranteed to find a path
 Minimum distance
 Minimum time
 Minimum cost (drivability, risk)

 Coverage/Search
 Explore/monitor an area by visiting all locations

 At least once
 Exactly once
 Minimizing time between visits etc.
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 Constraints
 Occupancy

 Obstacles defined by geometric representation
 State of vehicle cannot violate obstacle regions
 Included in definition of work space, configuration space

 Dynamics
 Holonomic vs Nonholonomic

 When motion constraints involve vehicle velocities, the 
system is considered nonholonomic
 Much harder planning problem
 Two wheeled robot a classic example

9

PLANNING



 Approaches
 Reactive – local approach

 Decide a direction to go in based on goal and obstacles
 Ignores vehicle dynamics
 Usually deterministic formulation

 Graph-based – global approach
 Graph extracted from workspace definition
 Graph generated by random sampling of nodes and random 

connections between nodes

 Optimal – global approach
 Find complete path to goal
 Incorporate constraints 

 May need to model a certain way
 Graph representation of environment
 Linear, nonlinear, mixed integer-linear
 Probabilistic representation of configuration space (soft 

constraints) 10

PLANNING



 Reactive - Bug Algorithms
 Simplest form of path planning from implementation 

point of view
 Assume very little knowledge of environment or robot state

 Define a set of rules, prove reachability of goal

 Bug 0, 1, 2, Tangent Bug ….
 Demonstrate how hard it is to find way around 2D 

environment even if optimality is of no concern
 Require as little storage and sensing as possible
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 Bug 0: Known goal and robot locations, can follow 
obstacle boundary
 Always head directly to goal 
 If blocked, turn and follow obstacle until you can 

head directly to goal  again
 Doesn’t always work
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 Bug 1: Known location or robot and goal, can 
follow obstacle boundary
 Head directly toward goal
 When blocked, circumvent obstacle, remember closest 

point
 Return to closest point and continue to goal
 Guaranteed arrival
 Can be slow
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 Bug 2: Known location and goal, can follow 
obstacle boundary
 Head toward goal, track start-goal line (m-line)
 When blocked, circumvent obstacle until m-line 

 Try both directions if necessary
 Continue to goal
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 Bugs Comparison
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Bug 2 beats Bug 1 Bug 1 beats Bug 2

No clear winner, we need something more sophisticated



 Potential Fields [Khatib, 1986]
 A simple type of navigation function

 A function that describes a direction of travel everywhere in 
the environment

 Defines a potential field at every point in map
 Robot descends potential field by moving in direction 

of negative gradient
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 Potential Field Target function
 Target attracts the vehicle

 Distance ( ρ ) between vehicle, q, and target, qg

 Usually quadratic, can be anything
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 Potential Fields
 Obstacles repel the vehicle

 Strength based on shortest distance to obstacle Oi

 Often a maximum distance of influence is included
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 Distance to obstacle function
 Minimum of the distances to every point on the 

boundary of the obstacle

 Gradient for distance to obstacle

 Must find closest point to evaluate either
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 Potential Fields
 Potential field is combination of the two fields
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 Potential Fields
 Motion should then proceed in the direction of steepest 

descent of the potential
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 Potential fields
 Pros

 Easy to implement
 Fast to compute online
 Intuitive
 Can tailor how close to go to obstacles

 Cons
 Not optimal
 No dynamic constraints considered
 Local minima
 Stability
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 Potential fields example
 Hardest part is defining the environment

 Non overlapping obstacles

 Define potential field only for plotting

 Gradient at current location is needed for motion
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 Potential Field Example
 Robot is assumed to move in direction of steepest 

descent with speed equal to magnitude of gradient

 Potential is created from three elements
 Attractive potential to goal
 Repulsive potential from closest point on obstacle, up to a 

range of 0.5 meters
 Repulsive potential from center of obstacle, up to a range of 

4 meters
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 The obstacle field
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 Potential fields example
 The potential field
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 Potential fields example
 Gradient field
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 Potential fields example
 The trajectory

28

POTENTIAL FIELDS



 The obstacle field
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 Potential fields example
 The potential field
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 Potential fields example
 Gradient field
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 Potential fields example
 The trajectory
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 Extended Potential Field
 Can add effect to manage vehicle heading

 A specific adaptation for driving robots
 Rotation potential

 Add a dependence on bearing to obstacle,
 As bearing increases, reduce potential
 No point worrying about what’s behind you
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 Select n inputs to apply 
 Eg. Const velocity, 10 different 

rotation rates
 Propagate trajectory forward to 

time t+T
 Check each trajectory for collisions
 Score each trajectory based on

 Progress to goal
 Distance from obstacles
 Similarity to previous choice
 Preference between input choices
 Etc…

 Pick best option and apply input
 Repeat as quickly as possible 34
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 Example
 Two-wheeled robot
 n = 11 trajectories
 T = 1 second
 v = 2 m/s
 ω = [-2, 2] rad/s
 Update rate  = 5 Hz

 Environments with 5 well spaced and 25 not-so-well 
spaced obstacles
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 Identical to Trajectory Rollout except:
 Add dynamic constraint on input choices

 Max angular acceleration limits rotation rate options at 
each timestep

 Same for max translational acceleration if varying velocity

 Both are implemented in ROS navigation stack
 You’ve already used these

38
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 Summary - Reactive Planners
 Fast computationally

 Unless entire potential field must be computed (wavefront)
 Simple control laws

 Low computation requirements
 Great for microcontroller based robots

 Difficult to find globally optimal solutions
 Do not consider dynamic constraints
 Great for 2D, and for maneuverable robots 
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 Planning Concepts

 Reactive Motion Planning Algorithms
 Bug
 Potential Fields
 Trajectory Rollout

 Graph Based Motion Planning
 Finding paths on graphs

 Wavefront
 Dijkstra, A*, D*

 Generating Graphs from environments
 Visibility Graphs
 Decompositions 40
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 Graph-Based Planning
 Suppose map can be represented by a set of nodes 

and edges along which the vehicle can travel
 Can apply graph based shortest path solutions to find 

a path quickly 
 Optimal over graph

 Ignore dynamics

41
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 Definition of graph
 Graph G of nodes N with edges E: G(N,E)
 Cost of traveling from ni to nj: c(ni,nj)

 c(n1,n3) = 9
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 Neighbouring nodes
 Set of nodes adjacent to n: A(n)

 A(n5) = {n1, n3, n7}
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 Current cost
 Minimum cost of getting to node n: g(n)

 g(n4) = 14
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 Cost to go
 Cost to go heuristic from node n to the end: h(n)

 h(n4) = 22 for straight line distance metric
 Must always be less than or equal to true cost to go

45

PLANNING

2

0

3

1

8

9

5

6

7

4
22



 Cost lower bound
 Estimated cost of shortest path through node n: 

f(n) = g(n) + h(n)
 f(n4) = 14 + 22 = 36
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 Finding the shortest path over a graph
 Breadth first search

 Start at starting node
 Find all nodes that can be reached in one step (neighbours)
 For each neighbour in previous step, find all of its 

neighbours, and repeat until all nodes (or end node) has 
been reached

 Only works for edges of equal length

 Depth first search
 Start at starting node
 Pick an available node based on some criteria (longest, 

closest to goal)
 Proceed as far as possible, then backtrack
 Continue until all nodes have been visited
 Only works for edges of equal length

47

PLANNING



 Wavefront
 If the graph produced has unit cost edges, breadth 

first search can be used

 Resembles the propagation of a wave through graph
 Works well in 2D, 3D  for reasonable discretizations

 Resulting cost map is monotonic
 Leads to shortest path from any point in the occupancy grid 

to the final position 
 Or from current position to every point in the graph
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 Underlying graph structure for wavefront
 Add edges of unit cost by discretizing free space with 

an occupancy grid
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 Define two sets
 Open Set: O

 Set of nodes currently under consideration
 Initialize with start node n0

 Implemented as a queue, stack or priority queue
 Queue – breadth first search
 Stack – depth first search
 Priority queue – Dijkstra’s and A*

 Top node is first node in queue or stack form of open set
 Best node is first node in priority queue open set

 Closed Set: C
 All nodes for which processing is complete

50
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 Breadth first search algorithm
 While top node is not goal

 Move top node from open set to closed set
 Store node, back pointer to previous node and current 

cost 

 Add all neighbouring nodes of top node not currently in 
either set to the bottom of the open set 

 Store node, current cost and back pointer to top node

 For each node already in the open set, update current cost 
and back pointer if new path is shorter
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 Wavefront Algorithm
 Initialization

 Create open set of positions, which includes only the end 
point, assign a cost of 0

 Create a closed set of position, which includes all obstacles, 
assign a cost of infinity

 Main loop
 First position of open set becomes active

 Move to closed set
 Identify all neighbours that can be reached and are not 

already in open or closed sets
 Update each neighbour in open set with lower of the cost 

through current node or previous best cost
 Assign each new neighbour a cost of the active position 

+1
 Add all new neighbours to the end of the open set

 Until open set is empty 52
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 Wavefront
 Example
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 Wavefront
 Example
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 Wavefront
 50x50 grid (converted to a graph and solved using 

breadth first search)
 Link to video
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 Wavefront
 The vehicle then identifies a path by always selecting 

a position that reduces the cost to goal.
 Can be performed locally, wavefront is monotonic
 Many possible trajectories result
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 Fast Marching
 Can extend the basic wavefront algorithm to use 

more of a continuum based approach
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 Fast Marching
Can define viscosity of flow around obstacles
Results in a smooth path that does not hug obstacle corners
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 Breath-First, Wavefront and Fast Marching
 Pros:

 Monotic, always find path to goal if it exists
 Easy to implement

 Cons:
 Computes path from every point in planning space to end 

goal
 Not very efficient, but fast enough for 2D

 Must treat environment as discretized graph with unit step 
edges (occupancy grid)
 Approximation always leads to sub-optimality in 

resulting path
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 Finding the shortest path over a graph
 Dijkstra’s algorithm

 Start from starting node
 Expand all links out of the node with lowest current cost
 Find the next lowest current cost node, repeat previous step
 Stop when end goal is closed, no other path can be shorter

 A* Algorithm
 Modified version of Dijkstra’s
 Rely on edge costs and cost to go heuristic
 Pick most promising node at each step
 Cost to go heuristic should never be greater than true cost

 Can run all these algorithms from current location 
forward or from end point backward 60
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 Dijkstra’s algorithm
 While best node is not goal

 Move best node from open set to closed set
 Store node, back pointer to previous node and current 

cost 

 Add all neighbouring nodes of best node not currently in 
either set to the open set 

 Store node, current cost and back pointer to best node

 For each node already in the open set, update current cost 
and back pointer if new path is shorter

61

PLANNING

( ) ( ),bestf n f n n O  

{ , ( ) \ ( )}bestO O A n O C 

for all ( )
   if  ( ( ) ( , ) ( ))
     backpoint to , update ( )

best

best best

best

n O A n
g n c n n g n

n g n

 
 



 Dijkstra’s Search Algorithm
 Take best node in O and move to C
 Find all neighbours of best node, add 

to O in order of current cost
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 Dijkstra’s Search Algorithm
 If a neighbour node is already in O, 

keep only shortest path to it
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 Dijkstra’s Search Algorithm
 Repeat for each node in O
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 Dijkstra’s Search Algorithm
 Repeat for each node in O
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 Dijkstra’s Search Algorithm
 Repeat for each node in O
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 Dijkstra’s Search Algorithm
 Repeat for each node in O
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 Dijkstra’s Search Algorithm
 Repeat for each node in O
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 Dijkstra’s Search Algorithm
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 Dijkstra’s Search Algorithm
 Stop when end node is current 

best node in open list
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 Dijkstra’s Search Algorithm
 Stop when end node is current 

best node in open list
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 Dijkstra’s Example
 100 nodes, all connected to 4 closest neighbours
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 Finding the shortest path over a graph
 Dijkstra’s algorithm

 Start from starting node
 Expand all links out of the node with lowest current cost
 Find the next lowest current cost node, repeat previous step
 Stop when end goal is closed, no other path can be shorter

 A* Algorithm
 Modified version of Dijkstra’s
 Rely on edge costs and cost to go heuristic
 Pick most promising node at each step
 Cost to go heuristic should never be greater than true cost

 Can run all these algorithms from current location 
forward or from end point backward 73
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 A* algorithm
 While best node is not goal

 Move best node from open set to closed set

 Store node, back pointer to previous node, current cost 
and lower bound cost 

 Add all adjacent nodes not currently in either set to the 
open set 

 Store node, current cost, lower bound cost and back 
pointer to nbest

 For each node already in open set, update current cost, 
lower bound cost and back pointer if new path is shorter
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 Step 1
 Add n1 to O with a lower bound cost of 33
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 Step 2
 Take best node in O, move it to C,  store current cost 

and back pointer (0,Null in this case)

76

PLANNING

2

0

3

1

8

9

5

6

7

4

7

16

9 8

7 12

8

12
12

13

9
9

11

4

13

O C
(1,-,0)



 Step 3
 Add all nodes accessible from best 

node (1) to 0, ordered based on cost 
estimate. If node is already in O, 
update cost estimate and back pointer
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 Step 4: Repeat steps 2 and 3
 Add n6 to 0
 Cost of n1-n3-n5 is greater than n1-n5, 

keep old cost
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 Step 5
 Add n7 to 0
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 Step 6
 Add n4 to 0
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 Step 7
 Add n9 to 0
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 Step 8
 Add n0 to 0
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 Step 9
 Done, node 0 is best node in open list

83

PLANNING

2

0

3

1

8

9

5

6

7

4

7

16

9 8

7 12

8

12
12

13

9
9

11

4

O C
(0,9,38) (1,-,0)
(6,3,38) (3,1,9)
(4,2,39) (5,1,16)

(2,1,7)
(7,5,25)
(9,7,38)



 A* Example:
 100 nodes, all connected to 4 closest neighbours
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 Planning Concepts

 Reactive Motion Planning Algorithms
 Bug
 Potential Fields
 Trajectory Rollout

 Graph Based Motion Planning
 Finding paths on graphs

 Wavefront
 Dijkstra, A*, D*

 Generating Graphs from environments
 Visibility Graphs
 Decompositions 85
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 How to make a map into a graph
 Deterministically

 Occupancy Grid-based Graph
 Visibility Graph
 Cell Decomposition
 Voronoi Diagram 
 Constrained Delaunay Triangulation

 Randomly
 Probabilistic roadmaps (PRMs)
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 Occupancy grid to graph
 Each cell is a node
 Can connect to 4,8 or 16 nearest 

neighbours if not occupied
 Edge length either 1 unit or true 

distance
 Wavefront or Dijkstra/A*

 The more connections, the harder 
the search, but the more direct the 
path
 Memory limitations
 Time complexity
 For small 100x100 grid

 10,000 nodes
 20,000, 40,000, 80,000 edges 87
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 Visibility Graph
 If  2D map is defined as a polygon with polygonal 

obstacles (holes)
 Connect all vertices in map to create a visibility graph

 Line of sight between each vertex pair
 Remove all edges that intersect obstacles

 Step 1: Connect start and end point to all visible 
vertices
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 Visibility graph
 Step 2: For each obstacle vertex reached in step 1, 

add all its connections, including connections along 
obstacle edges
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 Visibility Graph
 Step 3: Repeat until no new edges are added
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 Example of Visibility Graph
 Brute force: O(n3) 

 For each connection, check n edge intersections
 10 Convex obstacles
 218 links
 4 seconds

91

PLANNING



 Visibility graph
 Can eliminate many unnecessary edges

 All edges that head into obstacle 
 Nodes in regions defined by convex nodes can also be 

ignored

 As a result, concave obstacle nodes can be ignored
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 Example – 2D path 
planning
 30 Obstacles 
 Guaranteed shortest 

path
 Many collision checks

 Connecting all nodes 
requires 7503 edge 
collision checks

 Resulting network has
 122 nodes
 976 edges
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 Example – 2D path planning
 Brute Force Runtime: 30 s
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 Visibility Graph
 Pros

 Guaranteed to find shortest path
 Fairly quick in 2D

 Cons
 Passes too close to obstacles
 Requires nodes and edges view of the world
 Not possible in 3D
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 Trapezoidal decomposition
 2D map cut vertically at each obstacle vertex
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 Trapezoidal Decomposition
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 Trapezoidal Decompositon
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 Topological graph from decomposition
 Create map by connecting adjacent open cells

 Adjacency graph
 Can connect cell centroids to form path (may 

intersect obstacles)
 Distance between cells is unclear
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 Voronoi Diagram
 An alternative that does not find the shortest path, 

but perhaps the “safest” path
 Each edge is equidistant between two points
 Results in paths that are furthest away from points
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 Voronoi diagrams in Matlab
 Very fast algorithm, relies on qhull software

 Cannot handle non-point obstacles
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 Voronoi Diagrams in Robot Racing Planner
 Detect pylons through peak detect algorithm

102

PLANNING



 Voronoi Diagrams in Robot Racing Planner
 Create Voronoi diagram, connect graph, apply A*
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 Voronoi Diagrams in Robot Racing Planner
 Connect graph using bounding box on obstacles, 

apply A*
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 Voronoi Diagram in Robot Racing Planner
 Simulation results
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 Voronoi Racer vs Trajectory Rollout
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 Voronoi Racer vs Trajectory Rollout
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 Generalized Voronoi Diagram
 Uses distance to object function (same as potential 

fields)
 Find equidistant points between two obstacles
 For polygonal obstacles, results in lines, ellipse segments
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 Example
 Trapezoid centroids connected in a graph
 Graph represents connectivity of space, not navigable 

paths, utility of shortest path is therefore dubious
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 Constrained Delaunay Triangulation
 Complex algorithm, not often used, but interesting

111

PLANNING

1 2

3
1

2
3

5

4

6

7

8

9

A B

C
D

E



 Voronoi Diagram in Robot Racing Planning
 Competition results, success!
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 D*
 Dynamic A* algorithm
 Adapted to be finite horizon, replan locally with new link 

information
 Intended for robots that uncover new information as they 

travel
 Solve for a path from start to end using A* from end to start
 If new path length info becomes available

 Affected nodes are marked Raised
 All downstream nodes also marked raised, until all nodes that can be 

affected by the change are marked
 New costs are assigned using the usual update, except that if a node 

cost can be reduced, it is marked Lowered, and all upstream nodes are 
improved

 The result is a sequences of downstream and upstream waves 
updating the costs for only those nodes affected by the new 
information

 Anthony Stentz “The Focussed D* Algorithm for Real-Time 
Replanning”, In Proceedings of the International Joint Conference on 
Artificial Intelligence, August 1995
 See Choset et al. Appendix H for summary 113
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