Fnsiglit il
Technologlies [V4
5 — M B [

ME 597: AUTONOMOUS MOBILE ROBOTICS
SECTION 8 — PLANNING I

Prof. Steven Waslander

COMPONENTS

Mission
Mapping

Mission
Planning

Mission Autonomy

Path
Planning

Mapping

Environmental Autonomy

Control

Vehicle Autonomy

Hardware

OUTLINE

Planning Concepts

Reactive Motion Planning Algorithms
Bug
Potential Fields
Trajectory Rollout

Graph Based Motion Planning

Finding paths on graphs
Depth First, Breadth First, Wavefront
Dijkstra, A*

Generating Graphs from environments
Visibility Graphs
Decompositions

OUTLINE

Probabilistic Graph Based Planning
Complex Planning Examples
Probabilistic Roadmaps
PRM Algorithm
Collision Detection
Sampling Strategies
RRT Algorithm

Optimization Based Planning
Linear Programming

Nonlinear Programming

PLANNING

Motion Planning Terminology
Work space

The environment the vehicle finds itself in

Comes from industrial robotics

2-3D physical world

Can be defined 1n a number of ways
Polygons, Surfaces, Occupancy grids

Free Space

Obstacles

lf/ |\~ <= R obot
S

Xy

PLANNING

o Motion Planning Terminology

» Configuration Space
o Complete planning space of robot

o For two linkage robot, workspace i1s 2D space of joint angles,
minus black areas which are positions blocked by obstacles

o Configuration space is much different, defined by allowable
states in white, unallowable in grey

10 1 rB,‘ b {
. Start -
J_ i :i:
{ B
End
‘)

I

gl f
. 1t E‘}ar .: i i

%

Work space Configuration space

PLANNING

o Motion Planning Terminology
» Configuration space for a two wheeled non-point robot

o Can be insufficient to simply expand the obstacle
Can find x,y path but must also identify heading to travel in 0

Constraints on velocity not represented here

PLANNING

Objectives

Predefined target configuration
Guaranteed to find a path
Minimum distance
Minimum time
Minimum cost (drivability, risk)

Coverage/Search
Explore/monitor an area by visiting all locations
At least once
Exactly once
Minimizing time between visits etc.

PLANNING

Constraints

Occupancy
Obstacles defined by geometric representation
State of vehicle cannot violate obstacle regions
Included 1n definition of work space, configuration space

Dynamics
Holonomic vs Nonholonomic

When motion constraints involve vehicle velocities, the
system 1s considered nonholonomic

Much harder planning problem

Two wheeled robot a classic example

PLANNING
Approaches

Reactive — local approach
Decide a direction to go in based on goal and obstacles
Ignores vehicle dynamics
Usually deterministic formulation

Graph-based — global approach
Graph extracted from workspace definition

Graph generated by random sampling of nodes and random
connections between nodes

Optimal — global approach
Find complete path to goal
Incorporate constraints
May need to model a certain way
Graph representation of environment

Linear, nonlinear, mixed integer-linear

Probabilistic representation of configuration space (soft
constraints)

BUG ALGORITHMS

Reactive - Bug Algorithms

Simplest form of path planning from implementation
point of view
Assume very little knowledge of environment or robot state

Define a set of rules, prove reachability of goal

Bug 0, 1, 2, Tangent Bug

Demonstrate how hard it is to find way around 2D
environment even if optimality 1s of no concern
Require as little storage and sensing as possible

BUG ALGORITHMS

Bug 0: Known goal and robot locations, can follow
obstacle boundary

Always head directly to goal

If blocked, turn and follow obstacle until you can
head directly to goal again

Doesn’t always work

X assume a left-
turning robot

The turning direction might ® start
be decided beforehand..

BUG ALGORITHMS

o Bug 1: Known location or robot and goal, can
follow obstacle boundary

Head directly toward goal

When blocked, circumvent obstacle, remember closest
point

Return to closest point and continue to goal
Guaranteed arrival

Can be slow i

BUG ALGORITHMS

o Bug 2: Known location and goal, can follow
obstacle boundary
» Head toward goal, track start-goal line (m-line)

» When blocked, circumvent obstacle until m-line
o Try both directions if necessary

» Continue to goal
m-line

J
Goal

BUG ALGORITHMS

o Bugs Comparison

Bug 2 beats Bug 1 Bug 1 beats Bug 2

No clear winner, we need something more sophisticated

POTENTIAL FIELDS
Potential Fields [Khatib, 1986]

A simple type of navigation function

o A function that describes a direction of travel everywhere in
the environment

Defines a potential field at every point in map

Robot descends potential field by moving in direction
of negative gradient

POTENTIAL FIELDS

o Potential Field Target function

» Target attracts the vehicle
o Distance (p) between vehicle, g, and target, ¢

V(@) =K,.p(q,9°)°

» Usually quadratic, can be anything

POTENTIAL FIELDS

Potential Fields

Obstacles repel the vehicle
o Strength based on shortest distance to obstacle OF

S 1
I/re (Q) — Kre I
’ p;p(q,())*

o Often a maximum distance of influence 1s included

; (1 _12 o
Vo, (@)=K, > (,O(q,Oi) pj p(q,0")<p

i 0 otherwise

N

POTENTIAL FIELDS

Distance to obstacle function

Minimum of the distances to every point on the
boundary of the obstacle

IO(QaOZ) = ED;(Q,O(Q,C) = l‘?gig((q_c)T(q_C))l/Z

Gradient for distance to obstacle

(4-¢")

p(g.c’)

Vp(g,c') =

Must find closest point to evaluate either

POTENTIAL FIELDS

o Potential Fields
» Potential field 1s combination of the two fields

Vix) =V (x)+V,,(x)

POTENTIAL FIELDS

o Potential Fields

» Motion should then proceed in the direction of steepest
descent of the potential

-VV

1 1) (p—¢)
plg.c’) p)plg.c)

P

=—| 2K ,(¢g—q°)— Z max| 0,2K ,
=1

POTENTIAL FIELDS

Potential fields

Pros
o Easy to implement
o Fast to compute online
o Intuitive
o Can tailor how close to go to obstacles

Cons
o Not optimal
o No dynamic constraints considered

o Local minima
o Stability

POTENTIAL FIELDS

Potential fields example

Hardest part is defining the environment
Non overlapping obstacles

Define potential field only for plotting

Gradient at current location is needed for motion

POTENTIAL FIELDS

Potential Field Example

Robot 1s assumed to move in direction of steepest
descent with speed equal to magnitude of gradient

Potential 1s created from three elements
Attractive potential to goal

Repulsive potential from closest point on obstacle, up to a
range of 0.5 meters

Repulsive potential from center of obstacle, up to a range of
4 meters

POTENTIAL FIELDS
o The obstacle field

“r Start
18} u
16
14 +
12t

10F

(Goal

POTENTIAL FIELDS

Potential fields example
The potential field

Al
st
DA AN
‘\\\\\‘e\‘\‘;\““\“‘“ sy
AR S 55 S AT AIACKAASC /200 ([
ALt e S L |
oL

Ly LS e
UMV o

POTENTIAL FIELDS

Potential fields example
Gradient field

I e e

16
14
12

10

L R R N R R R R A

¢
I T L L R I I R I B I R N i R]

L R I R R R N N A L
R I A R R R A A N R L A

POTENTIAL FIELDS

o Potential fields example

» The trajectory
20

18
16
14+
12
10F

1 | |
0 5 10 15 20 25

POTENTIAL FIELDS
o The obstacle field

20
181
16
141
12+

10

1
-2 L] -2 Y L] i
T T T T

| | | | | |
0 5 10 15 20 25

POTENTIAL FIELDS

Potential fields example
The potential field

40

20

| =

20

15

0 o 10 15

20

25

POTENTIAL FIELDS

o Potential fields example
» Gradient field

20
18
16
14
12}
10 XN

POTENTIAL FIELDS

o Potential fields example
» The trajectory

20
181
16+
141
12}

10F

1
] L]] HicY L] oo
T T T T

POTENTIAL FIELDS

Extended Potential Field

Can add effect to manage vehicle heading
o A specific adaptation for driving robots

Rotation potential
Add a dependence on bearing to obstacle,
As bearing increases, reduce potential
No point worrying about what’s behind you

a) Classical Potential Q
e 4 gl A

b} Rotation Potential

with parameter 3
%‘. Gioal
N (R
A '

Khatib and Chatila

TRAJECTORY ROLLOUT

Select n inputs to apply

Eg. Const velocity, 10 different
rotation rates

Propagate trajectory forward to
time t+71

Check each trajectory for collisions
Score each trajectory based on
Progress to goal
Distance from obstacles

Similarity to previous choice

Preference between input choices
Etc...

Pick best option and apply input
Repeat as quickly as possible

TRAJECTORY ROLLOUT

Example
Two-wheeled robot
n = 11 trajectories
T =1 second
v=2m/s
w = [-2, 2] rad/s
Update rate =5 Hz

Environments with 5 well spaced and 25 not-so-well
spaced obstacles

TRAJECTORY ROLLOUT — 5 OBSTACLES

TRAJECTORY ROLLOUT — 25 OBSTACLES

DYNAMIC WINDOW APPROACH

Identical to Trajectory Rollout except:

Add dynamic constraint on input choices

o Max angular acceleration limits rotation rate options at
each timestep

o Same for max translational acceleration if varying velocity

Both are implemented in ROS navigation stack
You've already used these

PLANNING

Summary - Reactive Planners

Fast computationally
Unless entire potential field must be computed (wavefront)

Simple control laws
Low computation requirements
Great for microcontroller based robots

Daifficult to find globally optimal solutions
Do not consider dynamic constraints
Great for 2D, and for maneuverable robots

OUTLINE

Graph Based Motion Planning
Finding paths on graphs

Wavefront
Dijkstra, A*, D*
Generating Graphs from environments
Visibility Graphs
Decompositions

PLANNING

o Graph-Based Planning

» Suppose map can be represented by a set of nodes
and edges along which the vehicle can travel
» Can apply graph based shortest path solutions to find
a path quickly
o Optimal over graph

PLANNING

o Definition of graph
» Graph G of nodes N with edges E: G(N,E)
¢ Cost of traveling from n; to n;: ¢(n;,n;)
oc(n,ng) =9

PLANNING

Neighbouring nodes
Set of nodes adjacent to n: A(n)
o A(ny) ={ny, ng nyf

PLANNING

o Current cost

» Minimum cost of getting to node n: g(n)
ogn,) =14

PLANNING

o Cost to go

» Cost to go heuristic from node n to the end: A(n)
o h(n,) = 22 for straight line distance metric

o Must always be less than or equal to true cost to go

PLANNING

o Cost lower bound

» Estimated cost of shortest path through node n:

f(n) = g(n) + h(n)
of(n)=14+22=36

PLANNING

Finding the shortest path over a graph

Breadth first search
Start at starting node
Find all nodes that can be reached in one step (neighbours)

For each neighbour in previous step, find all of its
neighbours, and repeat until all nodes (or end node) has
been reached

Only works for edges of equal length

Depth first search

Start at starting node

Pick an available node based on some criteria (longest,
closest to goal)

Proceed as far as possible, then backtrack
Continue until all nodes have been visited
Only works for edges of equal length

PLANNING

Wavetront

If the graph produced has unit cost edges, breadth
first search can be used

Resembles the propagation of a wave through graph
Works well in 2D, 3D for reasonable discretizations

Resulting cost map 1s monotonic

Leads to shortest path from any point in the occupancy grid
to the final position

Or from current position to every point in the graph

PLANNING

o Underlying graph structure for wavefront

» Add edges of unit cost by discretizing free space with
an occupancy grid

PLANNING

Define two sets
Open Set: O

Set of nodes currently under consideration
Initialize with start node n,
Implemented as a queue, stack or priority queue
Queue — breadth first search
Stack — depth first search
Priority queue — Dijkstra’s and A*
Top node 1s first node in queue or stack form of open set
Best node 1s first node in priority queue open set

Closed Set: C

All nodes for which processing is complete

PLANNING

Breadth first search algorithm
While top node is not goal

Move top node from open set to closed set

Store node, back pointer to previous node and current

S fn,) < f(n),YneO

Add all neighbouring nodes of top node not currently in
either set to the bottom of the open set

Store node, current cost and back pointer to top node

0={0, A(n,,)\(0UC)}
For each node already in the open set, update current cost
and back pointer if new path is shorter

forallneOn A(n,,)

if (g(n,,)+1<g(n))
backpointto n, , update g(n)

top !

PLANNING
Wavefront Algorithm

Initialization

Create open set of positions, which includes only the end
point, assign a cost of 0

Create a closed set of position, which includes all obstacles,
assign a cost of infinity
Main loop
First position of open set becomes active
Move to closed set

Identify all neighbours that can be reached and are not
already in open or closed sets

Update each neighbour in open set with lower of the cost
through current node or previous best cost

Assign each new neighbour a cost of the active position
+1

Add all new neighbours to the end of the open set
Until open set is empty

oo jofojojojofojojo0o|0|0|0
oyojofojo|jojofojo0|0|0|0|0
go|o|o|o|o|0|0|0O|0|0|O|0 |0
coyoo0o(ojo0o0j0(0O|0|0|0 |0 |2

2 2 4 5 6 7 & 9 10 11 12 13 14 15

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
1

0
0
0
0
0
0
0
0
0

» Example

PLANNING
o Wavefront

PLANNING

o Wavetront

+ Example
7 (18P 6 s rieta e a[9 (9 (9 |9 (9 |9
61?}\‘\161514131211109\8\35Eﬂa
5 |17 |16 | D15 |14 11 8lN7|7|7]|7
4 (17 1615 .-.-..[ANEEE
3 |17 |16|15/1 !!-!!5\5\5 5
2 |17 |16]15|14 ola|7|6]|s5|a4 4
117 1615|1413 |11]10| 0|8 |7|6|5|4 |3
0|17 |16|15[14[13 (12120010 ls s tclslad
D 1 2 3 456 7 8 9 10 11 12 13 14 15

16-735, Howie Choset, with slides from Ji Yeong Les, G.D. Hager and Z. Dodds

PLANNING

Wavetront

50x50 grid (converted to a graph and solved using
breadth first search)
Link to video

50

45

40

35

30

25

20

14

10

5

0

0 10 20 30 40 50

PLANNING

Waveftront

The vehicle then identifies a path by always selecting
a position that reduces the cost to goal.

o Can be performed locally, wavefront 1is monotonic
o Many possible trajectories result

50

45

40

35

30

25

20

15

10

PLANNING

Fast Marching

Can extend the basic wavefront algorithm to use

more of a continuum based approach

PLANNING

o Fast Marching
o Can define viscosity of flow around obstacles

o Results in a smooth path that does not hug obstacle corners

PLANNING

Breath-First, Wavefront and Fast Marching

Pros:
Monotic, always find path to goal if it exists
Easy to implement

Cons:

Computes path from every point in planning space to end
goal

Not very efficient, but fast enough for 2D

Must treat environment as discretized graph with unit step
edges (occupancy grid)
Approximation always leads to sub-optimality in
resulting path

PLANNING

Finding the shortest path over a graph
Dijkstra’s algorithm

Start from starting node

Expand all links out of the node with lowest current cost
Find the next lowest current cost node, repeat previous step
Stop when end goal is closed, no other path can be shorter

A* Algorithm
Modified version of Dijkstra’s
Rely on edge costs and cost to go heuristic
Pick most promising node at each step
Cost to go heuristic should never be greater than true cost

Can run all these algorithms from current location
forward or from end point backward

PLANNING

Dijkstra’s algorithm
While best node 1s not goal

Move best node from open set to closed set

Store node, back pointer to previous node and current

T fn,) < f () Yneo

Add all neighbouring nodes of best node not currently in
either set to the open set

Store node, current cost and back pointer to best node

O — {O’ A(nbest) \ (0 J C)}
For each node already in the open set, update current cost
and back pointer if new path is shorter

forallne O A(n,,,)

It (g(ny) +cn,,,n) < g(n))
backpoint to n,, ., update g(n)

PLANNING O ¢

(17'70)

Dijkstra’s Search Algorithm

Take best node in O and move to C

Find all neighbours of best node, add
to O 1n order of current cost

PLANNING O ¢
2,1,7 | (1,-,0)
Dijkstra’s Search Algorithm (3,1,9)
If a neighbour node 1s already in O, (5,1,16)

keep only shortest path to it

PLANNING O ¢
(3,1,9 | (1,-,0)
Dijkstra’s Search Algorithm (4,2,14) | (2,1,7)
Repeat for each node in O (5,1,16)

PLANNING O C

(4,2,14) | (1,-,0)

Dijkstra’s Search Algorithm (5,1,16) | (2,1,7)

Repeat for each node in O (6,3,20) | (3,1,9)

PLANNING

o Dykstra’s Search Algorithm
» Repeat for each node in O

O C
(5,1,16) (1,-,0)
(6,3,20) (2,1,7)
(8,4,26) (3,1,9)
(7,5,27) | (4,2,14)

PLANNING O G
(6,3,20) (1,-,0)

o Dykstra’s Search Algorithm (7,5,25) | (2,1,7)
» Repeat for each node in O (8,4,26) | (3,1,9)
(4,2,14)

(5,1,16)

PLANNING O G
(7,5,25) (1,-,0)

o Dykstra’s Search Algorithm (8,4,26) | (2,1,7)
» Repeat for each node in O (3,1,9)
(4,2,14)

(5,1,16)

PLANNING

o Dykstra’s Search Algorithm

O C
(8,4,26) (1,-,0)
(9,7,34) (2,1,7)

(3,1,9)
(4,2,14)
(5,1,16)
(6,3,20)

(7,5,25)

PLANNING

o Dykstra’s Search Algorithm

» Stop when end node 1s current
best node 1n open list

(9,7,34)

(17"0)

(0,8,39)

(2,1,7)

(3,1,9)

(4,2,14)

(5,1,16)

(6,3,20)

(7,5,25)

PLANNING

o Dykstra’s Search Algorithm

» Stop when end node 1s current
best node 1n open list

(0,9,38)

(17"0)

(2,1,7)

(3,1,9)

(4,2,14)

(5,1,16)

(6,3,20)

(7,5,25)

PLANNING

Dijkstra’s Example
100 nodes, all connected to 4 closest neighbours

100
9 7
80 F~

70+
60 -

50+

40 -

30
20 -

10+

PLANNING

Finding the shortest path over a graph

A* Algorithm
Modified version of Dijkstra’s
Rely on edge costs and cost to go heuristic
Pick most promising node at each step
Cost to go heuristic should never be greater than true cost

Can run all these algorithms from current location
forward or from end point backward

PLANNING

A* algorithm
While best node 1s not goal
Move best node from open set to closed set

(1) < f(n),¥n €O

Store node, back pointer to previous node, current cost
and lower bound cost

Add all adjacent nodes not currently in either set to the
open set

Store node, current cost, lower bound cost and back
pointer to n,,,,

0 ={0, A(n,)\ (OLC)}

For each node already in open set, update current cost,
lower bound cost and back pointer if new path is shorter

forallne O A(n,,,)

It (g(n,.,,) +c(ny,,,n) +h(n) < f(n))
backpoint to n, ., update f'(n), g(n)

PLANNING O ¢

(1,-,33)

Step 1

Add n; to O with a lower bound cost of 33

PLANNING O C

(17'70)

Step 2

Take best node 1n O, move 1t to C, store current cost
and back pointer (0,Null in this case)

PLANNING

Step 3

Add all nodes accessible from best
node (1) to 0, ordered based on cost
estimate. If node 1s already in O,

update cost estimate and back pointer

(3,1,34)

(17'70)

(5,1,35)

(2,1,36)

PLANNING O C

(5,1,35) | (1,-,0)

Step 4: Repeat steps 2 and 3 (2,1,36) | (3,1,9)

Add ngto 0 (6,3,38)

Cost of n,-n4yn; is greater than n;-n,,
keep old cost

12

PLANNING O ¢
(2,1,36) | (1,-0)

o Step 5 (7,5,37) | (3,1,9)
» Addn,to 0 (6,3,38) | (5,1,16)

PLANNING O ¢
(7,5,37) | (1,-0)

o Step 6 (6,3,38) | (3,1,9)
* Addn,to 0 (4,2,39) | (5,1,16)
(2,1,7)

PLANNING O ¢
9,7,38) | (1,-0)

o Step 7 (6,3,38) | (3,1,9)
* Add ngyto 0 (4,2,39) | (5,1,16)
(2,1,7)

(7,5,25)

PLANNING O ¢
0,9,38) | (1,-0)

o Step 8 (6,3,38) | (3,1,9)
» Add n,to 0 (4,2,39) | (5,1,16)
(2,1,7)

(7,5,25)

PLANNING O ¢
(0,9,38) | (1,-0)

o Step 9 (6,3,38) | (3,1,9)
» Done, node 0 1s best node 1in open list (4,2,39) | (5,1,16)
(2,1,7)

(7,5,25)

PLANNING

A* Example:
100 nodes, all connected to 4 closest neighbours

100
90 Y
80 |-
70
60 - §
90 |

30 -
20}

10

0

OUTLINE

o Planning Concepts

o Reactive Motion Planning Algorithms
e Bug
e Potential Fields
e Trajectory Rollout

o Graph Based Motion Planning
e Finding paths on graphs

o Wavefront
o Dijkstra, A*, D*
» Generating Graphs from environments
o Visibility Graphs
o Decompositions

PLANNING

How to make a map into a graph

Deterministically
Occupancy Grid-based Graph
Visibility Graph
Cell Decomposition
Voronol Diagram
Constrained Delaunay Triangulation

Randomly
Probabilistic roadmaps (PRMs)

PLANNING

Occupancy grid to graph

Each cell 1s a node

Can connect to 4,8 or 16 nearest //
neighbours if not occupied P S
Edge length either 1 unit or true -
distance - \\\\
Wavefront or Dijkstra/A* N
The more connections, the harder
the search, but the more direct the
path
Memory limitations
Time complexity \\
For small 100x100 grid N
10,000 nodes \\
20,000, 40,000, 80,000 edges - \QO

PLANNING

Visibility Graph
If 2D map 1s defined as a polygon with polygonal
obstacles (holes)
o Connect all vertices in map to create a visibility graph
Line of sight between each vertex pair
Remove all edges that intersect obstacles

Step 1: Connect start and end point to all visible
vertices

= 7

PLANNING

Visibility graph
Step 2: For each obstacle vertex reached in step 1,

add all its connections, including connections along
obstacle edges

PLANNING

Graph

Visibility

added

edges are

\\%

Step 3: Repeat until no ne

PLANNING

Example of Visibility Graph
Brute force: O(n?)
o For each connection, check n edge intersections

10 Convex obstacles

218 links
4 seconds

16 -

14 -

12 -

10 -

15

20

25

PLANNING

o Visibility graph
» Can eliminate many unnecessary edges

o All edges that head into obstacle

Nodes in regions defined by convex nodes can also be
1gnored

PLANNING

Example — 2D path
planning
30 Obstacles
Guaranteed shortest
path

Many collision checks
o Connecting all nodes
requires 7503 edge
collision checks
Resulting network has
o 122 nodes
0 976 edges

5k

10

PLANNING

o Example — 2D path planning
» Brute Force Runtime: 30 s

30¢
50 4
20} |
15+

10+

PLANNING

o Visibility Graph
» Pros

o Guaranteed to find shortest path
o Fairly quick in 2D

» Cons
o Passes too close to obstacles

o Requires nodes and edges view of the world
o Not possible in 3D

PLANNING

Trapezoidal decomposition
2D map cut vertically at each obstacle vertex

U12

PLANNING
Trapezoidal Decomposition

PLANNING

o Trapezoidal Decompositon

PLANNING

Topological graph from decomposition
Create map by connecting adjacent open cells
o Adjacency graph

Can connect cell centroids to form path (may
Intersect obstacles)

Distance between cells 1s unclear

() I~
S /
~
c
N f")&—lﬂ

PLANNING

Voronoi Diagram

An alternative that does not find the shortest path,
but perhaps the “safest” path

o Each edge 1s equidistant between two points

o Results 1n paths that are furthest away from points

| Voronoi cell

lﬁm

Voronoil vertex / ; \/ "'\

TN

PLANNING

o Voronoi diagrams in Matlab

» Very fast algorithm, relies on ghull software
o Cannot handle non-point obstacles

100 —

90

0F,

PLANNING

o Voronoil Diagrams in Robot Racing Planner
» Detect pylons through peak detect algorithm

1600 y Y
i
1400 LIDAR Scan
Local Minima
12001 % Local Maxima
3
< 10001
o
8
§ %1
o
[o
S 600F
S
m-
m— —
i’

l{!°

PLANNING

o Voronoil Diagrams in Robot Racing Planner
» Create Voronoi diagram, connect graph, apply A*

o Vorbnoi Verﬁcies
.| @ Obstacle Points
- |—Voronoi Boundaries}

y Position [cm)]

-200 0 200 400 600 800

X Position [cm]

PLANNING

Voronoi Diagrams in Robot Racing Planner

Connect graph using bounding box on obstacles,
apply A*

° | © Voronoi Verticies
.| + Vehicle Position

o QObstacle Points
; : : ; . |==Shortest Path
400 é é é ,L é ; ?mmmmi

500

W
o
o

.
.
.
.
4
.
.
.
.
.
.
.
.
.
.
.
.
.
a

y Position [cm]

100 ; V| . R SR (g e e

0 100 200 300 400 500 600 700
X Position [cm]

PLANNING

o Voronoil Diagram in Robot Racing Planner

y Position [cm]

300

» Simulation results

X Position [cm]

___________________________________ 2% ... Voronoi Verticies|
+ Vehicle Position o - —— —
° | - Obstacle Points | 40 . ’ |—Simulated Vehicle Path]
{"'|=—=Shortest Path o . . .
?o o © © © o o o o 1200
o . 1000r . E '. : u
80O e | e co\
. 600f « :
! 400f .
0 200 400 600 800

500 1000
X position [cm]

International Autonomous Robot
Racing Competition 2010

Outdoor Testing

EXTRA SLIDES

PLANNING

o Generalized Voronol Diagram

» Uses distance to object function (same as potential
fields)

o Find equidistant points between two obstacles
o For polygonal obstacles, results in lines, ellipse segments

N

N /\

PLANNING

Example
Trapezoid centroids connected in a graph

Graph represents connectivity of space, not navigable
paths, utility of shortest path is therefore dubious

10

\
/

PLANNING

Constrained Delaunay Triangulation
Complex algorithm, not often used, but interesting

PLANNING

Voronoi Diagram in Robot Racing Planning
Competition results, success!

PLANNING

D*

Dynamic A* algorithm

Adapted to be finite horizon, replan locally with new link
information

Intended for robots that uncover new information as they
travel
Solve for a path from start to end using A* from end to start

If new path length info becomes available
Affected nodes are marked Raised

All downstream nodes also marked raised, until all nodes that can be
affected by the change are marked

New costs are assigned using the usual update, except that if a node
cost can be reduced, it 1s marked Lowered, and all upstream nodes are
1mproved
The result is a sequences of downstream and upstream waves
updating the costs for only those nodes affected by the new
information

Anthony Stentz “The Focussed D* Algorithm for Real-Time
Replanning”, In Proceedings of the International Joint Conference on
Artificial Intelligence, August 1995

See Choset et al. Appendix H for summary

