

ME 597: AUTONOMOUS MOBILE ROBOTICS SECTION 4 – CONTROL

Prof. Steven Waslander

COMPONENTS

OUTLINE

- Control Structures
- Linear Motion Models
 - PID Control
 - Linear Quadratic Regulator
 - Tracking
- Nonlinear Motion Models
 - Description of main methods
 - Geometric driving controller

- Regulation
 - Maintaining a constant desired state.
- Path Following
 - Tracking a state trajectory defined in state only, but not restricted in time.
- Trajectory Tracking
 - Tracking a state trajectory with explicit timing.

- Time-Scale Separation
 - Using multi-loop feedback analogy
 - Estimation and control performed much more quickly than mapping and planning
 - Possible to ignore inner loops when developing higher levels of control
 - Abstractions must be consistent

Typical Timescales

- Separating planning and control timescales
 - Pros
 - o Simplified planning, often to make it real-time
 - Guarantees on stability
 - Can operate without plan, through human-in-the-loop
 - Cons
 - Planning interval may require use of old state information
 - Resulting trajectories may not be optimal
 - Trajectories may collide with environment
 - Planner may not be able to consider dynamic constraints
 - Provide infeasible paths

• Planner Outputs

- Full trajectory defined by open loop inputs
 - At each time step, desired inputs specified
 - Pre-computed open loop control
 - May still require feedback for disturbance rejection
 - Often not at frequency of controller
 - Superscript t for trajectory

$$\pi_t^t = \{u_t^t, \dots, u_{t+N}^t\}$$

- Planner Outputs
 - Waypoints
 - Position coordinates to achieve
 - With/without timing constraints
 - Joined by straight line segments to create a path

$$\pi_t^{wp} = \{x_t^{wp}, \dots, x_{t+N}^{wp}\}$$

- Planner Outputs
 - Motion primitives
 - A sequence of predefined motions
 - E.g. Straight lines and curves of defined radius
 - End point of each segment easily calculated
 - Often parameterized to admit an array of options

$$\pi_t^{mp} = \{m_1^{mp}, \dots, m_M^{mp}\}$$

- Block Diagrams
 - Combined Planner and Controller
 - Planner generates desired state and inputs at every time step
 - Replan given new information at each time step

- Block Diagrams
 - Planner with Feedforward control
 - o Planner generates a desired plan, π_t
 - Direction to head in
 - Speed of travel etc.
 - Feedforward controller converts it into inputs
 - Inverse dynamics needed to make conversion

- Open loop often works
 - e.g. Open loop on RC steering
 - Steering has embedded position control in servo
 - From robot perspective, commanded angles are achieved

- Block Diagrams
 - Planner with Feedback control for regulation
 - Planner generates instantaneous desired state
 - Rely on timescale separation for control design
 - Used with high frequency inner loop control

- Block Diagrams
 - Planner with Feedback & Feedforward control
 - Planner generates desired state
 - Feedforward controller generates required open loop input
 - Feedback controller eliminates errors from disturbances, unmodeled dynamics

OUTLINE

- Control Structures
- Linear Motion Models
 - PID Control
 - Linear Quadratic Regulator
 - Tracking
- Nonlinear Motion Models
 - Description of main methods
 - Geometric driving controller

LINEAR CONTROL DESIGN

- Assume linear dynamics
- Start with regulation problem
- Adapt to tracking afterwards
- Control Structure:
 - Pure Feedback for regulation
 - Feedforward/feedback for tracking

PID CONTROL

- Proportional-Integral-Derivative control
 - e.g. for velocity control of ground robots

$$u_{t} = K_{p}e_{t} + K_{i}\sum_{t=0}^{t}e_{t}dt + K_{d}\dot{e}_{t}$$

- Particularly effective for SISO linear systems, or systems where inputs can be actuated in a decoupled manner
- Proportional and derivative govern time response, stability
- Integral eliminates steady state errors, sensor biases and constant disturbances
- Can be used to track reference signals (up to bandwidth of closed loop system)

QUADROTOR ATTITUDE CONTROL

Key Developments

- Angular Accel.
 Feedback
 (specific thrust)
- Command Tracking
- Frame Stiffness
- Tip Vortex Impingement

TRACKING REFERENCE COMMANDS

Root mean square error of 0.65°

LINEAR CONTROL DESIGN

- Linear Quadratic Regulator
 - Linear Plant Model
 - Quadratic penalty on deviation from desired state and on control input usage
 - The controller optimally regulates all state errors to 0
- Derivation of optimal control will rely on backward induction
 - Recall Dynamic Programming

- Discrete time version
 - Same notation as Thrun, Fox
 - Define initial and final times

$$t_0, t_f$$

Linear motion model

$$x_{t} = A_{t} x_{t-1} + B_{t} u_{t}$$

- o Disturbances can be ignored, leads to same result
- Assume we know the state at each timestep, including initial state

$$x(t_0) = x_0$$

- Goal: Drive all states to zero!
 - Regulation, not tracking
- Cost Definition:
 - Tradeoff between error in states and use of control

$$J\left(x_{t_0:t_f}, u_{t_0+1:t_f}\right) = \frac{1}{2} x_{t_f}^T Q_{t_f} x_{t_f} + \frac{1}{2} \sum_{t=t_0+1}^{t_f} \left(x_{t-1}^T Q_{t-1} x_{t-1} + u_t^T R_t u_t\right)$$

Final Cost

State Cost

Control Cost

- \circ LQR Problem: Find sequence of inputs that minimizes J
 - subject to dynamics, boundary conditions

- A note on "Quadratic Cost"
 - Since state and input are vectors, quadratic penalties are written as

$$x^{T}Qx$$

- Where x_t is an nX1 vector, and Q is an nXn weighting matrix that decides how to penalize each state separately
- For example, suppose $x_t = [N E D]$, the position of a vehicle in North, East and Down coordinates.
- If we care more about errors in the horizontal than the vertical plane, we might pick a Q as follows:

$$Q = \begin{bmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 1 \end{bmatrix} \longrightarrow x_t^T Q x_t = \begin{bmatrix} N & E & D \end{bmatrix} \begin{bmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} N \\ E \\ D \end{bmatrix}$$

$$=10N^2 + 10E^2 + 1D^2$$

Derivation

• Aim to formulate as a backward induction problem, and solve for minimum at each backward time step

$$J_{t} = \min_{u_{t}} \left[L(x_{t-1}, u_{t}) + J_{t+1} \right]$$

- End condition is known
 - Defined to have this quadratic form

$$J_{t_f} = \frac{1}{2} x_{t_f}^T Q_{t_f} x_{t_f}$$

- Derivation
 - Assume J_t is of specific quadratic form

$$J_t = \frac{1}{2} x_t^T P_t x_t$$

- Find J_{t-1} in the same form
- Done by rewriting the optimal cost as

$$J_{t-1} = \min_{u_t} \left[\frac{1}{2} x_{t-1}^T Q_{t-1} x_{t-1} + \frac{1}{2} u_t^T R_t u_t + J_t \right]$$

Stage cost

Cost to Go

- Derivation
 - Substituting in for J_t

$$J_{t-1} = \min_{u_t} \frac{1}{2} \left[x_{t-1}^T Q_{t-1} x_{t-1} + u_t^T R_t u_t + x_t^T P_t x_t \right]$$

Incorporating dynamic constraints

$$J_{t-1} = \min_{u_t} \frac{1}{2} \left[x_{t-1}^T Q_{t-1} x_{t-1} + u_t^T R_t u_t + (A_t x_{t-1} + B_t u_t)^T P_t (A_t x_{t-1} + B_t u_t) \right]$$

- Derivation
 - Expanding

$$J_{t-1} = \min_{u_{t}} \frac{1}{2} \left[x_{t-1}^{T} Q_{t-1} x_{t-1} + u_{t}^{T} R_{t} u_{t} + x_{t-1}^{T} A_{t}^{T} P_{t} A_{t} x_{t-1} + x_{t-1}^{T} A_{t}^{T} P_{t} B_{t} u_{t} + u_{t}^{T} B_{t}^{T} P_{t} A_{t} x_{t-1} + u_{t}^{T} B_{t}^{T} P_{t} B_{t} u_{t} \right]$$

- Now J_{t-1} is a function of only u_t , x_{t-1} and P_t , but neither of the last two depend on u_t
- The minimization over u_t can be performed
 - ullet Set derivative to zero and solve for u_t

- Derivation
 - We rely on matrix derivatives

$$\frac{\partial J_{t-1}}{\partial u_t} = u_t^T R_t + x_{t-1}^T A_t^T P_t B_t + u_t^T B_t^T P_t B_t = 0$$

• Transposing and grouping like terms together yields

$$\left(B_t^T P_t B_t + R_t\right) u_t = -B_t^T P_t A_t x_{t-1}$$

• Next, an inverse is applied to define the control law

$$u_{t}^{*} = -\left(B_{t}^{T} P_{t} B_{t} + R_{t}\right)^{-1} B_{t}^{T} P_{t} A_{t} x_{t-1}$$
$$= -K_{t} x_{t-1}$$

Derivation

 Now we must complete the backward induction and demonstrate that

$$J_{t-1} = \frac{1}{2} x_{t-1}^T P_{t-1} x_{t-1}$$

 To do so, we substitute in the optimal control input and simplify

$$J_{t-1} = \min_{u_{t}} \frac{1}{2} \left[x_{t-1}^{T} Q_{t-1} x_{t-1} + u_{t}^{*T} R_{t} u_{t}^{*} + x_{t-1}^{T} A_{t}^{T} P_{t} A_{t} x_{t-1} + x_{t-1}^{T} A_{t}^{T} P_{t} B_{t} u_{t}^{*} + u_{t}^{*T} B_{t}^{T} P_{t} A_{t} x_{t-1} + u_{t}^{*T} B_{t}^{T} P_{t} B_{t} u_{t}^{*} \right]$$

- Derivation
 - Substituting

$$J_{t-1} = \frac{1}{2} \left[x_{t-1}^T Q_{t-1} x_{t-1} + x_{t-1}^T K_t^T R_t K_t x_{t-1}^T \right.$$

$$+ x_{t-1}^T A_t^T P_t A_t x_{t-1} - x_{t-1}^T A_t^T P_t B_t K_t x_{t-1}^T$$

$$- x_{t-1}^T K_t^T B_t^T P_t A_t x_{t-1} + x_{t-1}^T K_t^T B_t^T P_t B_t K_t x_{t-1} \right]$$

• Regrouping, we see J_{t-1} is of the right form

$$J_{t-1} = \frac{1}{2} x_{t-1}^{T} \left[Q_{t-1} + K_{t}^{T} R_{t} K_{t} + A_{t}^{T} P_{t} A_{t} - A_{t}^{T} P_{t} B_{t} K_{t} - K_{t}^{T} B_{t}^{T} P_{t} A_{t} + K_{t}^{T} B_{t}^{T} P_{t} B_{t} K_{t} \right] x_{t-1}$$

Derivation

- Finally, substituting in for K_t yields a simplified form for defining the relation from P_t to P_{t+1}
 - Will spare you the details

$$J_{t-1} = \frac{1}{2} x_{t-1}^T \left[Q_{t-1} + A_t^T P_t A_t - A_t^T P_t B_t (B_t^T P_t B_t + R_t)^{-1} B_t^T P_t A_t \right] x_{t-1}$$

ullet As a result, we can define an update for $P_{t ext{-}1}$

$$P_{t-1} = Q_{t-1} + A_t^T P_t A_t - A_t^T P_t B_t (B_t^T P_t B_t + R_t)^{-1} B_t^T P_t A_t$$

- The costate update does not depend on the state.
 - If you assume you will arrive at the desired end goal, can compute in advance

- Summary of controller
 - Control
 - Depends on previous state and next costate

$$u_{t} = -K_{t} x_{t-1}$$

$$= -(B_{t}^{T} P_{t} B_{t} + R)^{-1} B_{t}^{T} P_{t} A_{t} x_{t-1}$$

- Costate update
 - Requires evolution backward in time from end state

$$P_{t-1} = Q_{t-1} + A_t^T P_t A_t - A_t^T P_t B_t (B_t^T P_t B_t + R_t)^{-1} B_t^T P_t A_t$$

- Implementation of algorithm
 - Set final costate based on terminal cost matrix

$$J_{t_{f}} = \frac{1}{2} x_{t_{f}}^{T} Q_{t_{f}} x_{t_{f}}$$

$$J_{t} = \frac{1}{2} x_{t}^{T} P_{t} x_{t}$$

$$P_{t_{f}} = Q_{t_{f}}$$

Solve for costate backward in time to initial time

$$P_{t-1} = Q_{t-1} + A_t^T P_t A_t - A_t^T P_t B_t (B_t^T P_t B_t + R_t)^{-1} B_t^T P_t A_t$$

 Note: Both steps depend only on problem definition, not initial or final conditions

- Implementation of algorithm
 - Next, find controller to use at each time step
 - Use pre-calculated costate to determine gain at time t

$$K_t = (B_t^T P_t B_t + R)^{-1} B_t^T P_t A_t$$

ullet Implement controller at time t using LQR gain and current state

$$u_t = -K_t x_{t-1}$$

Pictorially

- Example: LQR
 - Linear pitch controller for an aircraft
 - Linearized about constant speed and altitude

Longitudinal Equations of Motion

- Example: LQR
 - Elevator causes moment about cg
 - Tail resists rotation about cg (damping)
 - Total lift and weight approximately balance
 - Drag increases with elevator deflection

Longitudinal Equations of Motion

- Example
 - Dynamics
 - State defined as
 - \circ Angle of attack, α
 - \circ Pitch angle, θ
 - Pitch rate, q
 - ullet Input is elevator deflector, δ
 - If velocity and altitude are held constant, continuous dynamics are

$$\begin{bmatrix} \dot{\alpha} \\ \dot{\theta} \\ \dot{q} \end{bmatrix} = \begin{bmatrix} -0.313 & 0 & 56.7 \\ 0 & 0 & 56.7 \\ -0.0139 & 0 & -0.426 \end{bmatrix} \begin{bmatrix} \alpha \\ \theta \\ q \end{bmatrix} + \begin{bmatrix} 0.232 \\ 0 \\ 0.0203 \end{bmatrix} \delta$$

Example

• Sample Code (discretized dynamics):

```
% Solve for costate
for t=length(T)-1:-1:1
    P = Q+Ad'*Pn*Ad - Ad'*Pn*Bd*inv(Bd'*Pn*Bd+R)*Bd'*Pn*Ad;
    P_S(:,:,t)=P;
    Pn=P;
end

% Solve for control and simulate
for t=1:length(T)-1
    K = inv(Bd'*P_S(:,:,t+1)*Bd + R)*Bd'*P_S(:,:,t+1)*Ad;
    u(:,t)=-K*x(:,t);
    x(:,t+1) = Ad*x(:,t)+Bd*u(:,t);
end
```

- Example
 - Cost Matrices, Q, R = I

- Example
 - Costate values
 - All but (2,3) element for easy viewing

- Steady state linear quadratic regulator (SS LQR)
 - If end goal is far away, steady state solution can be used
 - Almost always the case, infinite horizon formulation

$$P = Q + A^{T}PA - A^{T}PB (B^{T}PB + R)^{-1}B^{T}PA$$

- Algebraic Ricatti Equation
- Can be solved two ways
 - Through iteration
 - Set Q_f to Q and run backward in time until convergence
 - Analytically
 - Ask Matlab (lqr(A,B,Q,R))

• Example: SS LQR

- Q, R trade off (ignoring terminal condition)
 - Large inputs will drive state to zero more quickly
 - Can define Q, R relative to each other
 - Absolute value defines rate of convergence

- Example: LQR Tradeoff
 - Blue

$$Q = 0.01I$$

- \circ R = 0.01I
- Red

$$extbf{o}$$
 Q = 0.01I

- \circ R = 0.1I
- Green

$${
m o} \ {
m Q} = 0.01 {
m I}$$

$$\circ R = I$$

- Example
 - Comparison of costs from three controllers

- Stochastic formulation
 - Zero mean additive Gaussian noise has no effect on result
 - Kind of surprising, but very nice
- Separation of Estimation and Control
 - Can be proven to be optimal solution
 - Linear Quadratic Gaussian controller
 - LQR Combined with Kalman Filter
 - LQR uses mean of Kalman belief as current state estimate

LINEAR QUADRATIC TRACKING

Tracking

- LQR control used with state and input offsets
 - Includes LQR regulation to non-zero quantities
- Desired trajectory can be defined by inputs

$$\pi^{t} = \{ \{ x_{t_0}^{t}, u_{t_{0+1}}^{t} \}, \dots, \{ x_{t_f-1}^{t}, u_{t_f}^{t} \} \}$$

State and input deviations used in LQR

$$\delta x_t = x_t - x_t^t, \quad \delta u_t = u_t - u_t^t$$

• Dynamics are the same, and control is now $u_t^t + \delta u_t$ $x_t = A_t x_{t-1} + B_t u_t$ $x_t^t = A_t x_{t-1}^t + B_t u_t^t$

$$\underline{-x_t^t} = A_t x_{t-1}^t + B_t u_t^t$$

$$\delta x_{t} = A_{t} \, \delta x_{t-1} + B_{t} \, \delta u_{t}$$

LINEAR QUADRATIC TRACKING

- Example: LQR Tracking
 - Sinusoidal variation
 - Trajectory driven by desired control input selection
 - Initial angle of attack error of 1 degree
 - Tracking achieved on identical timescale to LQR
 - Hardest part is defining desired trajectory
 - Example of superposition

OUTLINE

- Control Structures
- Linear Motion Models
 - PID Control
 - Linear Quadratic Regulator
 - Tracking
- Nonlinear Motion Models
 - Description of main methods
 - Geometric driving controller

- A field dominated by continuous time domain
 - Nonlinear systems (ECE 688)
- Consider continuous nonlinear dynamics without disturbances

$$\dot{x} = f(x, u)$$

- Rely on timescale assumption
 - Discrete output commands occur much more quickly than variation in system dynamics
 - Estimation also fast enough and accurate enough to ignore

- Let's take a test case
 - Two wheeled robot

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} v \cos \theta \\ v \sin \theta \\ \omega \end{bmatrix}$$

$$\dot{x} = f(x, u)$$

$$\downarrow \downarrow$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} u_1 \cos x_3 \\ u_1 \sin x_3 \\ u_2 \end{bmatrix}$$

Desired trajectory

- Selected to have same dynamics as system
- Specify desired inputs, and path results

$$\dot{x}^t = \begin{bmatrix} u_1^t \cos x_3^t \\ u_1^t \sin x_3^t \\ u_2^d \end{bmatrix}$$

$$u^t = \begin{bmatrix} e^{-0.2t} \\ 1 \end{bmatrix}$$

- Desired trajectory as Motion Primitive
 - Can be used to generate a family of trajectories that can be used to reduce planning problem

- Desired trajectory
 - Track arbitrary nonlinear curve
 - Specify desired states, and control must be determined

$$\dot{x}^t = \begin{bmatrix} 2\cos x_3^t \\ \sin x_3^t \\ x_1^t \end{bmatrix}$$

- Careful: example violates forward motion constraint
 - Not possible to track exactly

- Option 1: Feedback Linearization
 - If motion is of the form

$$\dot{x} = f(x) + g(x)u$$

• It is sometimes possible to find a controller which makes the map from v and x to dx/dt linear

$$u = a(x) + b(x)v$$

$$\dot{x} = f(x) + g(x)(a(x) + b(x)v)$$

$$= Ax + Bv$$

$$f(x) + g(x)a(x) = Ax$$

$$g(x)b(x)v = Bv$$

Linear Plant

Not possible for two-wheeled robot

- Option 2: Backstepping control
 - If we have a feedback linearizable system for which the inversion results in large inputs, can elect to leave some of the nonlinearity in the plant
 - If a control is known for a subsystem of derivative terms, then a controller for the full system can be developed one derivative at a time
 - Relies on Lyapunov stability argument to construct each successive controller and ensure stability
 - Not always easy to do!
- Not possible for two-wheeled robot

- Option 3: Sliding Mode Control
 - If a trajectory is known to converge to a desired equilibrium, regulation is possible
 - Find a control law that drives the system to the trajectory
 - Follow the trajectory to the equilibrium

- Is possible for two-wheeled robot
- Issues relating to control chattering can be addressed

- Many nonlinear control methods exist
 - Can work very well if the system is of the right form
 - Usually rely on knowing dynamics and derivatives exactly
 - Smooth derivatives required
 - Modeling issues, robustness of inversion
 - In practice, each nonlinear system is analyzed individually
- Continue with ground vehicle example
 - Slightly more complicated kinematics

- Motion Control for an automobile
 - Define error dynamics relative to desired path
 - Select a control law that drives errors to zero and satisfies input constraints
 - Prove stability of controller
 - Add dynamic considerations to manage unmodeled effects

- Goal of controller
 - To track straight line trajectories
 - o from one waypoint to the next
 - Also works on corners, smooth paths

Approach

- Look at both the error in heading and the error in position relative to the closest point on the path
 - Perpendicular distance for straight line segments
 - Can become ambiguous for curves, usually well defined
- Use the center of the front axle as a reference point
- Define an intuitive steering law to
 - Correct heading error
 - Correct position error
 - Obey max steering angle bounds

- Description of vehicle
 - All state variables and inputs defined relative to center point of front axle
 - Steering relative to heading (in opposite direction): δ
 - Velocity in direction of front wheels: v_f
 - Heading relative to trajectory: ψ

- Description of vehicle
 - Crosstrack error: *e*
 - Distance from center of front axle to closest point on trajectory

- Error Dynamics
 - Heading error
 - Rotation about rear wheel center point (ICR, again)
 - Component of velocity perpendicular to trajectory
 - Desired heading is 0

$$\dot{\psi}(t) = \frac{-v_f(t)\sin(\delta(t))}{l}$$

- Error Dynamics
 - Rate of change of cross track error
 - Component of velocity perpendicular to trajectory

$$\dot{e}(t) = v_f(t)\sin(\psi(t) - \delta(t))$$

- Proposed heading control law
 - Combine three requirements
 - Steer to align heading with desired heading
 - Proportional to heading error

$$\delta(t) = \psi(t)$$

 $\delta(t) = \tan^{-1} \left(\frac{ke(t)}{v_s(t)} \right)$

- Steer to eliminate crosstrack error
 - Also essentially proportional to error
 - Inversely proportional to speed
 - Gain *k* determined experimentally
 - Limit effect for large errors with inverse tan
- Maximum and minimum steering angles

$$\delta(t) \in [\delta_{\min}, \delta_{\max}]$$

• Combined steering law

$$\delta(t) = \psi(t) + \tan^{-1} \left(\frac{ke(t)}{v_f(t)} \right) \qquad \delta(t) \in [\delta_{\min}, \delta_{\max}]$$

- For large heading error, steer in opposite direction
 - The larger the heading error, the larger the steering correction

• Combined steering law

$$\delta(t) = \psi(t) + \tan^{-1} \left(\frac{ke(t)}{v_f(t)} \right) \qquad \delta(t) \in [\delta_{\min}, \delta_{\max}]$$

For large positive crosstrack error

$$\tan^{-1} \left(\frac{ke(t)}{v_f(t)} \right) \approx \frac{\pi}{2} \longrightarrow \delta(t) \approx \psi(t) + \frac{\pi}{2}$$

- The larger the crosstrack error, the larger the steering angle required by this part of the control
- As heading changes due to steering angle, the heading correction counteracts the crosstrack correction, and drives the steering angle back to zero

- Combined steering law
 - The error dynamics when not at maximum steering angle are $\dot{e}(t) = -v_f(t)\sin(\psi(t) \delta(t))$

$$= -v_f(t) \sin \left(\tan^{-1} \left(\frac{ke(t)}{v_f(t)} \right) \right)$$

$$= \frac{-ke(t)}{\sqrt{1 + \left(\frac{ke(t)}{v_f}\right)^2}}$$

For small crosstrack errors

$$\dot{e}(t) \approx -ke(t)$$

• Exponential decay of error

- Example code
 - Implement the error dynamics directly.
 - Explore various initial conditions to understand how the controller works.
 - Add in noise/disturbances and assess how the controller reacts.

- Example Large initial crosstrack error
 - Crosstrack error of 5 meters
 - o Max steer 25°, speed 5 m/s
 - Gain k = 2.5, Length l = 1 m

- Example Effect of speed variation
 - Crosstrack error of 5 meters
 - o Speeds 2, 5, 10 m/s

- Example Large Error in Heading
 - Max steer 25°, speed 5 m/s
 - Gain k = 2.5, Length l = 1 m

- Adjustments
 - Low speed operation
 - Inverse speed can cause numerical instability
 - Add softening constant to controller

$$\delta(t) = \psi(t) + \tan^{-1} \left(\frac{ke(t)}{k_s + v_f(t)} \right)$$

- Extra damping on heading
 - Becomes an issue at higher speeds in real vehicle
- Steer into constant radius curves
 - Improves tracking on curves by adding a feedforward term on heading

- Results
 - National Qualifying event

Exercise – Challenge Problem

- Create a simulation of bicycle model with noise on steering angle and speed inputs
- Add Stanley controller

$$\delta(t) = \psi(t) + \tan^{-1} \left(\frac{ke(t)}{v_f(t)} \right)$$
$$\delta(t) \in [\delta_{\min}, \delta_{\max}]$$

• Experiment with low speed and damping issues

$$\delta(t) = \psi(t) + \tan^{-1} \left(\frac{ke(t)}{k_s + v_f(t)} \right)$$

• Identify feedforward term for tracking curves

EXTRA SLIDES

- Option 1: Linearize about current state, control and apply LQR
 - "Extended Linear Quadratic Regulator"

$$A_{t} = \frac{\partial f}{\partial x} = \begin{bmatrix} 0 & 0 & -v\sin(\theta)\omega \\ 0 & 0 & v\cos(\theta)\omega \\ 0 & 0 & 0 \end{bmatrix} \quad B_{t} = \frac{\partial f}{\partial u} = \begin{bmatrix} \cos\theta & 0 \\ \sin\theta & 0 \\ 0 & 1 \end{bmatrix}$$

- Both matrices linearized about current control inputs, but are used to find the control to apply
- Therefore, must iterate solution to be linearizing about correct point
 - Inefficient, poor convergence

- Phase portrait
 - $v_f = 5 \text{ m/s}, k = 2.5, l = 1$ m
 - Allows comparison of crosstrack and heading error evolution
 - Arrows represent derivatives of axes
 - Red lines are boundaries of regions
- All arrows enter interior
- Only one equilibrium
- Crosstrack error decreasing in interior

- Global Convergence Proof
 - Split into three regions
 - Max steering angle
 - Min steering angle
 - Interior
 - Show trajectory always exits min/max regions
 - Show unique equilibrium exists at origin
 - Show interior dynamics always strictly decrease crosstrack error magnitude
 - Show that heading converges to crosstrack error
 - Show that if trajectory exits interior and enters min/max regions, it returns to interior with smaller errors

- Velocity control law
 - PI control to match planner speed recommendations
 - Curve limitations
 - Side force constraints to avoid wheel slip
 - Terrain knowledge
 - Combined command of brake and throttle
 - Brake cylinder pressure command
 - Throttle position command
 - Susceptible to chatter
 - More interesting problem: deciding what speed to drive