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ME 597: AUTONOMOUS MOBILE ROBOTICS
SECTION 4 — CONTROL
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CONTROL STRUCTURES

Regulation
Maintaining a constant desired state.

Path Following

Tracking a state trajectory defined in state only, but
not restricted in time.

Trajectory Tracking

Tracking a state trajectory with explicit timing.



CONTROL STRUCTURE

o Time-Scale Separation

» Using multi-loop
feedback analogy

» Estimation and control
performed much more
quickly than mapping
and planning

» Possible to ignore inner
loops when developing
higher levels of control

» Abstractions must be
consistent

0.01 Hz?

Control

10-100 Hz

Actuators

Vehicle

Continuous Evolution

Sensors

Typical Timescales




CONTROL STRUCTURE

Separating planning and control timescales

Pros
Simplified planning, often to make it real-time
Guarantees on stability
Can operate without plan, through human-in-the-loop

Cons
Planning interval may require use of old state information
Resulting trajectories may not be optimal
Trajectories may collide with environment
Planner may not be able to consider dynamic constraints
Provide infeasible paths



CONTROL STRUCTURES

o Planner Outputs

» Full trajectory defined by open loop inputs
o At each time step, desired inputs specified
o Pre-computed open loop control
o May still require feedback for disturbance rejection
o Often not at frequency of controller
o Superscript ¢ for trajectory

m ={u,....u, .}

a1




CONTROL STRUCTURES

o Planner Outputs
+ Waypoints

o Position coordinates to achieve

With/without timing constraints

o Joined by straight line segments to create a path

wp __ wp wp
)" ={x",...x




CONTROL STRUCTURES

o Planner Outputs
» Motion primitives
o A sequence of predefined motions
E.g. Straight lines and curves of defined radius

End point of each segment easily calculated
Often parameterized to admit an array of options

7" ={m/",....,my’}




CONTROL STRUCTURES

o Block Diagrams
» Combined Planner and Controller

o Planner generates desired state and inputs at every time
step

o Replan given new information at each time step

Planner & Vehicle
Controller (Plant)




CONTROL STRUCTURES

o Block Diagrams

» Planner with Feedforward control
o Planner generates a desired plan, 7,
Direction to head in
Speed of travel etc.
o Feedforward controller converts it into inputs
Inverse dynamics needed to make conversion

17 U, X,
Pl R Feedforward Vehicle
s Controller (Plant)




CONTROL STRUCTURE

Open loop often works
e.g. Open loop on RC steering

Steering has embedded position control in servo
From robot perspective, commanded angles are achieved

Potentiometer
(position sensor)

KL Control board




CONTROL STRUCTURES

o Block Diagrams

» Planner with Feedback control for regulation
o Planner generates instantaneous desired state
Rely on timescale separation for control design
Used with high frequency inner loop control

d

X U, X,
A N Feedback 5 Vehicle
_T Controller (Plant)




CONTROL STRUCTURES

o Block Diagrams

» Planner with Feedback & Feedforward control

o Planner generates desired state
o Feedforward controller generates required open loop input

o Feedback controller eliminates errors from disturbances,
unmodeled dynamics

Planner Feedforward
d Controller

Feedback Vehicle

Controller (Plant)
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o Linear Motion Models
» PID Control
» Linear Quadratic Regulator
» Tracking
o Nonlinear Motion Models
e Description of main methods

e Geometric driving controller




LINEAR CONTROL DESIGN

o Assume linear dynamics
o Start with regulation problem
o Adapt to tracking afterwards

o Control Structure:
» Pure Feedback for regulation
» Feedforward/feedback for tracking

ut xt
S Feedback S Vehicle
Controller (Plant)

x' =0 N




PID CONTROL

Proportional-Integral-Derivative control
e.g. for velocity control of ground robots

4
u, =K e, +KiZetdt+Kdét

t=0

Particularly effective for SISO linear systems, or
systems where inputs can be actuated 1n a decoupled
manner

Proportional and derivative govern time response,
stability

Integral eliminates steady state errors, sensor biases
and constant disturbances

Can be used to track reference signals (up to
bandwidth of closed loop system)



QUADROTOR ATTITUDE CONTROL

5 Controller Dynamics
ref e 5 ki | w 1,/1 b
_’ o
'(%) kqas +kd8+kp+ . > (rs + 1)32 >

Key Developments

Angular Accel.
Feedback
(specific thrust)

Command Tracking
Frame Stiffness

Tip Vortex
Impingement




TRACKING REFERENCE COMMANDS
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LINEAR CONTROL DESIGN

Linear Quadratic Regulator
Linear Plant Model

Quadratic penalty on deviation from desired state
and on control input usage

The controller optimally regulates all state errors to 0

Derivation of optimal control will rely on
backward induction

Recall Dynamic Programming



LINEAR QUADRATIC REGULATOR

Discrete time version
Same notation as Thrun, Fox
Define 1nitial and final times

oy 1,

Linear motion model

x, =Ax _,+Bu,

7V t-1

o Disturbances can be ignored, leads to same result

Assume we know the state at each timestep,
including initial state

x(2) = x,



LINEAR QUADRATIC REGULATOR

Goal: Drive all states to zero!

Regulation, not tracking

Cost Definition:

Tradeoff between error in states and use of control

J(xto:tf’utoﬂ:tf) Q X+

oy

Final Cost

1ff(T

zt o+l

T
XX TY, Rtut)

State Cost

Control Cost

LQR Problem: Find sequence of inputs that

minimizes

subject to dynamics, boundary conditions




LINEAR QUADRATIC REGULATOR

A note on “Quadratic Cost”

Since state and input are vectors, quadratic penalties
are written as

x' Ox

Where x, 1s an nX1 vector, and Q 1s an nXn weighting
matrix that decides how to penalize each state separately

For example, suppose x, = [N E D], the position of a
vehicle in North, East and Down coordinates.

If we care more about errors in the horizontal than
the vertical plane, we might pick a Q as follows:

_10 O O_ _10 O O_ _N_
0 0 1 0 0 1D

=10N*+10E% +1D"



LINEAR QUADRATIC REGULATOR

Derivation

Aim to formulate as a backward induction problem,
and solve for minimum at each backward time step

Jt = min[L(xt—l’ut) +Jt+1]

End condition is known
o Defined to have this quadratic form



LINEAR QUADRATIC REGULATOR

Derivation
Assume JJ, 1s of specific quadratic form

1

Jt sztTPtxt

Find oJ, ; in the same form
Done by rewriting the optimal cost as

Jo1= ITlin |:;xtTthlxt1 + %utTRtut + Jz}

Stage cost Cost to Go




LINEAR QUADRATIC REGULATOR

Derivation
Substituting in for J,

o T T
']t—l = nllng[xt—th—lxt—l TU, Rtut TX, Ptxt:l
Incorporating dynamic constraints

- 1 T T
Jt—l = I’Tlln E[xt—lgt—lxt—l TU, Rtut

+(A Xyq T Btut)TPt (Atxt—l T Btuz)]

77 t-1



LINEAR QUADRATIC REGULATOR

Derivation
Expanding

- 1 T T
Jz—l = nlm E[xt—th—lxt—l T, Rtut
T T T T
+ xt—lAt PtAzxt—l T xt—lAz PtBtut

+u/ B PAx,,+u/ B PBu, |

t

Now J, ; is a function of only u,, x, ; and P,, but
neither of the last two depend on u,

The minimization over u,can be performed

o Set derivative to zero and solve for u,



LINEAR QUADRATIC REGULATOR

Derivation

o We rely on matrix derivatives

‘th—l =u/R +x A PB +u B'PB, =0

t

o Transposing and grouping like terms together yields

(B/PB,+R,)u, =—B/PAx,,

o Next, an inverse 1s applied to define the control law

*

u, =—(B/PB, +R) B'PAx,
:_Ktxt—l



LINEAR QUADRATIC REGULATOR

Derivation

Now we must complete the backward induction and
demonstrate that

1
Joq = ExtT—lpt—lxt—l

To do so, we substitute in the optimal control input
and simplify

- 1 T *T *

Jt—l = nlln E[xt—th—lxt—l TU, Rtut
T T T T *
T xt—lAt PtAtxz—l T xt—lAt PtBtut

*T pT *T pT *
+u," BIPAx,_, +u, B/ PBu, |

77 t-1



LINEAR QUADRATIC REGULATOR

Derivation
Substituting

1
Joa= E[sz—le—lxz—l +x K, RK, x,

A A 2|

+ xtT—lAtTPtA X1 ™ xtT—lAzTPzB K xT

t e 1
T T pT T T pT
_'xt—th Bt PtA X +xt—1Kt Bz‘ PtBth 'xt—l:|

"7 t-1

Regrouping, we see <J, ; is of the right form

1
Jz—l = ExtT—l |:Qt—1 T KtTRth

T AtTPtAt - AtTPtBth
_KtTBtTPtAt T KtTBtTRthKt :|xt—1



LINEAR QUADRATIC REGULATOR

Derivation

Finally, substituting in for K, yields a simplified form
for defining the relation from P, to P,
Will spare you the details

1 .
Jt—l = ExtT—l |:Qt—1 + AtTPtAz o AzTPtBt(BtTPtBt T Rt) lBtTPtAt]xt—l

As a result, we can define an update for P,

Pt—l = Qt—l + AtTPtAt o AtTPth(BzTPtBt + Rt)_lBtTPtAt

The costate update does not depend on the state.

If you assume you will arrive at the desired end goal, can
compute in advance



LINEAR QUADRATIC REGULATOR

Summary of controller
Control

o Depends on previous state and next costate

u,= _Kt'xt—l

=—(B/PB,+R)"B'PAx

"7 t-1

Costate update

o Requires evolution backward in time from end state

Pz—l = Qt—l + AtTPtAt o AtTPtBt(BtTPtBt + Rt)_lBtTPtAt



LINEAR QUADRATIC REGULATOR

Implementation of algorithm
Set final costate based on terminal cost matrix

1 —
th :Ext]]:Qtfxtf P B
1 ; — t; _Qtf
Jt =§xt Pz‘xt

Solve for costate backward in time to initial time
Pt—l = Qt—l + AtTPtAt o AtTPtBt(BtTPtBt + Rt)_lBtTPtAt

Note: Both steps depend only on problem definition,
not initial or final conditions



LINEAR QUADRATIC REGULATOR

Implementation of algorithm

Next, find controller to use at each time step
o Use pre-calculated costate to determine gain at time ¢

Kl‘ = (BtTPtBt + R)_lBtTPtAt

o Implement controller at time ¢ using LQR gain and current
state

u, = _Ktxt—l



LINEAR QUADRATIC REGULATOR

o Pictorially

Initial Calculations
Fln]_sh < Start

® 00 ©

o 00 O

Start > Finish

Online Calculations e




LINEAR QUADRATIC REGULATOR
Example: LQR

Linear pitch controller for an aircraft
o Linearized about constant speed and altitude

t/'\::ng \ Tail
i .
Body X Llft

Earth X
{direction)

u ue . Elevator
Weight
Vv Force
Earth Z

{direction)

Longitudinal Equations of Motion



LINEAR QUADRATIC REGULATOR
Example: LQR

Elevator causes moment about cg

Tail resists rotation about cg (damping)
Total 1ift and weight approximately balance
Drag increases with elevator deflection

Wing A Tail
Lift Lift

Earth X
{direction)

Elevator
Vv Force

Earth Z
{direction)

Longitudinal Equations of Motion



LINEAR QUADRATIC REGULATOR

Example

Dynamics

o State defined as
Angle of attack, a
Pitch angle, O
Pitch rate, g

o Input is elevator deflector, 6

o If velocity and altitude are held constant, continuous
dynamics are

¢
Z

0313 0
0 0

—0.0139 0 -0.426

56.7 |

56.7

D

- 0.232 |
0

0.0203



LINEAR QUADRATIC REGULATOR

o Example
» Sample Code (discretized dynamics):

% Solve for costate

for t=length(T)-1:-1:1
P = Q+Ad"*Pn*Ad - Ad"*Pn*Bd*inv(Bd**Pn*Bd+R)*Bd"*Pn*Ad;
P S(:,:,t)=P;
Pn=P;

end

% Solve for control and simulate

for t=1:length(T)-1
K = inv(Bd"*P_S(:,:,t+1)*Bd + R)*Bd"*P_S(:,:,t+1)*Ad;
u(:,t)=-K*x(:,t);
x(:,t+1) = Ad*x(:,t)+Bd*u(:,t);

end




LINEAR QUADRATIC REGULATOR

o Example
» Cost Matrices, Q, R =1

Angle of Attack
1 T T L]
0 1 | 1 L
0 20 40 60 80 100
Pitch Angle
0 ;
-0.2
04 1 1 1 1
0 20 40 60 80 100
w10 Pitch Rate
5 T T

0 20 40 60 80 100




LINEAR QUADRATIC REGULATOR

Example

Costate values
o All but (2,3) element for easy viewing

Costate
10

/

0 20 40 B0 30 100




LINEAR QUADRATIC REGULATOR

Steady state linear quadratic regulator (SS LQR)

If end goal 1s far away, steady state solution can be
used

Almost always the case, infinite horizon formulation
P=0Q +4'PA-A"PB (B'PB +R)'B'PA

Algebraic Ricatti Equation
Can be solved two ways
Through iteration
Set @;to @ and run backward in time until convergence
Analytically
Ask Matlab (Iqr(A,B,Q,R))



LINEAR QUADRATIC REGULATOR

o Example: SS LQR

Angle of Attack

0 1 .

0 20 40 60

80 100

Pitch Angle
0 T T
_04 1 1 1 1
20 40 60 80 100
AT Pitch Rate
0 W
-5
-10 1 1 1 1
0 20 40 60 80 100




LINEAR QUADRATIC REGULATOR

Q, R trade off (ignoring terminal condition)

Large inputs will drive state to zero more quickly
Can define Q, R relative to each other

Absolute value defines rate of convergence

State
Error

Costs

Control
Input



LINEAR QUADRATIC REGULATOR

o Example: LQR Tradeoff

» Blue
0o Q=0.011
o R=0.011
* Red
0o Q=0.011
oR=0.11
* Green
0o Q=0.011
oR=1

Angle of Attack
1~
05 State
L 1 1 1 J
20 40 60 80 100
Pitch Angle
State
60 80 100
-3 .
%10 Pitch Rate
5[ _ State
0k -
_5 ‘ ‘\‘I
-10 I 1 1 1 J
0 20 40 60 80 100
Deflection Angle
05
Input
Y — —
-05

20 40 60

80 100




LINEAR QUADRATIC REGULATOR

Example

Comparison of costs from three controllers

State
Error

90 r

80+

701

40 +

30+

20

10

05

X

\

Green

Red
/ Blue

1 15 2 25 3 35 4 45 S

Control Effort



LINEAR QUADRATIC REGULATOR

Stochastic formulation

Zero mean additive Gaussian noise has no effect on
result

Kind of surprising, but very nice

Separation of Estimation and Control
Can be proven to be optimal solution

Linear Quadratic Gaussian controller
LQR Combined with Kalman Filter
LQR uses mean of Kalman belief as current state estimate



LINEAR QUADRATIC TRACKING

Tracking

LQR control used with state and input offsets
Includes LQR regulation to non-zero quantities

Desired trajectory can be defined by inputs
f_gpt ot t t
7 ={{xg gy, 4 I -4 PRy }3:
State and input deviations used in LQR
ox, =x, —x,, Ou, =u, —u,

. . t
Dynamics are the same, and control is now u, +ou,
x, =Ax_,+Bu,
—x, =4 x,,+Bu
A T t "t

ox, =4 0x,_,+ B, ou,




LINEAR QUADRATIC TRACKING

Example: LQR
Tracking

Sinusoidal variation

o Trajectory driven by
desired control input
selection

o Initial angle of attack
error of 1 degree

o Tracking achieved on
1dentical timescale to

LQR
Hardest part is
defining desired
trajectory

Example of
superposition

004

002

-0.02
-0.04
0

Angle of Attack

Pitch Rate

5 10 15 20
Deflection Angle




OUTLINE

o Control Structures

o Linear Motion Models
e PID Control
e Linear Quadratic Regulator
e Tracking

o Nonlinear Motion Models
» Description of main methods
» Geometric driving controller




NONLINEAR CONTROL

A field dominated by continuous time domain
Nonlinear systems (ECE 688)

Consider continuous nonlinear dynamics without
disturbances

x=f(x,u)

Rely on timescale assumption

Discrete output commands occur much more quickly
than variation in system dynamics

Estimation also fast enough and accurate enough to
1gnore



NONLINEAR CONTROL

Let’s take a test case
Two wheeled robot

x| [vcosd |
% vsing
0] | o
]
x=f(x,u)
!
X, u, COS x,




NONLINEAR CONTROL

Desired trajectory

Selected to have same
dynamics as system

Specify desired inputs,

and path results
u; COS X5
X' =1 u Sinx;,
1
[ 0.2t
. e
u =
1

18}

16

14F

121

Desired Trajectory

-04

14



NONLINEAR CONTROL

201

18 F

16

14+

12+

101

Desired trajectory as Motion Primitive

Can be used to generate a family of trajectories that
can be used to reduce planning problem

Curved Trajectory Swerve Trajectory

Desired Trajectory Desired Trajectory
18

161
14}
12f

10F

15



NONLINEAR CONTROL

Desired trajectory

Track arbitrary nonlinear
curve Desired Trajectory

Specify desired states, and °f
control must be determined °°[
i

_ _ 45+
2COS x; af
. i y 350
X =| SINx, Al
t 25F
X1

- _ gk

15F

Careful: example violates 1t

forward motion constraint

o Not possible to track
exactly



NONLINEAR CONTROL

Option 1: Feedback Linearization
If motion 1s of the form

X = f(x)+g(x)u

o It 1s sometimes possible to find a controller which makes
the map from v and x to dx/dt linear

u=a(x)+b(x)v f(x)+g(x)a(x)=Ax
i = f(x)+g(x)(a(x)+b(x)v)  g(x)b(x)v=Bv
= Ax+ Bv

Linear Plant

V U X

N b
7| 7 | T

Not possible for two-wheeled robot



NONLINEAR CONTROL

Option 2: Backstepping control

If we have a feedback linearizable system for which
the inversion results in large inputs, can elect to
leave some of the nonlinearity in the plant

If a control 1s known for a subsystem of derivative
terms, then a controller for the full system can be
developed one derivative at a time

Relies on Lyapunov stability argument to construct
each successive controller and ensure stability
Not always easy to do!

Not possible for two-wheeled robot



NONLINEAR CONTROL
Option 3: Sliding Mode Control

If a trajectory 1s known to converge to a desired
equilibrium, regulation i1s possible

Find a control law that drives the system to the
trajectory

Follow the trajectory to the equilibrium

Is possible for two-wheeled robot
Issues relating to control chattering can be addressed



NONLINEAR CONTROL

Many nonlinear control methods exist
Can work very well if the system is of the right form

Usually rely on knowing dynamics and derivatives
exactly

Smooth derivatives required
Modeling issues, robustness of inversion

In practice, each nonlinear system 1s analyzed
individually

Continue with ground vehicle example
Slightly more complicated kinematics



DRIVING CONTROLLER

o Motion Control for an automobile

Define error dynamics relative to desired path

Select a control law that drives errors to zero and
satisfies input constraints

Prove stability of controller

Add dynamic considerations to manage unmodeled
effects

ARAE l-.*:-__-:s‘l. 'I:! 1 E‘*

e =y

|




DRIVING CONTROLLER

o Goal of controller

» To track straight line trajectories
o from one waypoint to the next
o Also works on corners, smooth paths




DRIVING CONTROLLER

Approach
Look at both the error in heading and the error in
position relative to the closest point on the path

Perpendicular distance for straight line segments
Can become ambiguous for curves, usually well defined

Use the center of the front axle as a reference point

Define an intuitive steering law to
Correct heading error
Correct position error
Obey max steering angle bounds



DRIVING CONTROLLER

Description of vehicle

All state variables and inputs defined relative to
center point of front axle

Steering relative to heading (in opposite direction): o
Velocity in direction of front wheels: v,
Heading relative to trajectory: w




DRIVING CONTROLLER

Description of vehicle
Crosstrack error: e

o Distance from center of front axle to closest point on
trajectory




DRIVING CONTROLLER

Error Dynamics

Heading error
o Rotation about rear wheel center point (ICR, again)
o Component of velocity perpendicular to trajectory
o Desired heading is O

—v,(£)sin(o(¢))

(1) =

[




DRIVING CONTROLLER

Error Dynamics

Rate of change of cross track error
o Component of velocity perpendicular to trajectory

e(r) = v, (1)sin(y (1) - 6(1))




DRIVING CONTROLLER

Proposed heading control law

Combine three requirements

Steer to align heading with desired heading S
Proportional to heading error (t) - l//(t )

Steer to eliminate crosstrack error
Also essentially proportional to error ke(t)

-1
Inversely proportional to speed o(t) =tan
v, ()

Gain k determined experimentally
Limit effect for large errors with inverse tan

Maximum and minimum steering angles

é‘(t) € [5min ! 5max]




DRIVING CONTROLLER

Combined steering law

5(t) = W(t) +tan™ (keigj 5(t) € [5min ’ §max]

Vy

For large heading error, steer in opposite direction

o The larger the heading error, the larger the steering
correction



DRIVING CONTROLLER

Combined steering law
5(t) =y (@) +tan | X4 50 €[6,0,0,m,]
v,(2)
For large positive crosstrack error

1 ke(t) NZ

tan X
v () 2

= 5(t)zl//(t)+§

The larger the crosstrack error, the larger the steering
angle required by this part of the control

As heading changes due to steering angle, the heading
correction counteracts the crosstrack correction, and drives
the steering angle back to zero



DRIVING CONTROLLER

Combined steering law

The error dynamics when not at maximum steering

angle are e(t) = —v, (7)sin(y (¢) —o(¢))

=-v,(¢)sin (tan1 [ijign

—ke(t)

- 2
Vy
For small crosstrack errors

e(t) = —ke(t)

Exponential decay of error



DRIVING CONTROLLER

Example code
Implement the error dynamics directly.

Explore various initial conditions to understand how
the controller works.

Add 1n noise/disturbances and assess how the
controller reacts.




DRIVING CONTROLLER

Example — Large initial crosstrack error

Crosstrack error of 5 meters

o Max steer 25°, speed 5 m/s
o Gain k=2.5, Length /=1 m

25



DRIVING CONTROLLER

Example — Effect of speed variation

Crosstrack error of 5 meters
o Speeds 2,5, 10 m/s

15 20
x (m)



DRIVING CONTROLLER

o Example — Large Error in Heading

» Max steer 25°, speed 5 m/s
o Gaink =25, Length/=1m

y (m)




DRIVING CONTROLLER

Adjustments

Low speed operation
Inverse speed can cause numerical instability
Add softening constant to controller

ke(t)

S{)=w(t)+tan™ kv, ()

Extra damping on heading
Becomes an 1ssue at higher speeds in real vehicle

Steer into constant radius curves

Improves tracking on curves by adding a feedforward term
on heading



DRIVING CONTROLLER

Results

National Qualifying event

NQE Trajectory

|

North (miles)
|
—

| | L | | |
-04 -03 -02 -0.1 0 0.1
East (miles)

Lateral Tracking Swerves Around Cars, Tank Trap
: : 05— : : : :

0.5

F".‘r-:*.ll-'-L-rv. I:JNH" g R ‘*1 4 I]"J]lj" -lj ;H‘L_ T"‘ .'1I‘i:-r§‘ b

Crosstrack Error (m)
(=]

Crosstrack Error (m)

5 10 94 96 98 10 102
Time Elapsed (min) Time Elapsed (min)



EXERCISE — CHALLENGE PROBLEM

Create a simulation of bicycle model with noise 5
on steering angle and speed inputs

Add Stanley controller

S(t) =w(t)+tan™ [ke(t)]
v, (1)
s(t)els. .5

min ! ¥ max ]

Experiment with low speed and damping issues

ke(?) ]

k,+v, (1)

)=y () + tanl[

Identify feedforward term for tracking curves



EXTRA SLIDES




NONLINEAR CONTROL

Option 1: Linearize about current state, control
and apply LQR

“Extended Linear Quadratic Regulator”

0 0 -vsin(f)w| cosé 0
of _ |
A4===/0 0 vcos(f)w | B,=—-=|sind 0

Ox ou
0 0 0 01

Both matrices linearized about current control
inputs, but are used to find the control to apply
Therefore, must iterate solution to be linearizing
about correct point

Inefficient, poor convergence
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Only one equilibrium

Crosstrack error

decreasing in interior
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Global Convergence Proof

Split into three regions
Max steering angle
Min steering angle
Interior

Show trajectory always exits min/max regions
Show unique equilibrium exists at origin

Show interior dynamics always strictly decrease
crosstrack error magnitude

Show that heading converges to crosstrack error

Show that if trajectory exits interior and enters
min/max regions, it returns to interior with smaller
errors
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Velocity control law

PI control to match planner speed recommendations
Curve limitations
Side force constraints to avoid wheel slip
Terrain knowledge

Combined command of brake and throttle
Brake cylinder pressure command
Throttle position command
Susceptible to chatter

More interesting problem: deciding what speed to
drive



