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 Control Structures
 Linear Motion Models

 PID Control
 Linear Quadratic Regulator
 Tracking

 Nonlinear Motion Models
 Description of main methods
 Geometric driving controller
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OUTLINE



 Regulation
 Maintaining a constant desired state.

 Path Following
 Tracking a state trajectory defined in state only, but 

not restricted in time.

 Trajectory Tracking
 Tracking a state trajectory with explicit timing.
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CONTROL STRUCTURES



 Time-Scale Separation
 Using multi-loop 

feedback analogy
 Estimation and control 

performed much more 
quickly than mapping 
and planning

 Possible to ignore inner 
loops when developing 
higher levels of control

 Abstractions must be 
consistent
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 Separating planning and control timescales
 Pros

 Simplified planning, often to make it real-time
 Guarantees on stability
 Can operate without plan, through human-in-the-loop

 Cons
 Planning interval may require use of old state information
 Resulting trajectories may not be optimal
 Trajectories may collide with environment 
 Planner may not be able to consider dynamic constraints

 Provide infeasible paths
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 Planner Outputs
 Full trajectory defined by open loop inputs

 At each time step, desired inputs specified
 Pre-computed open loop control
 May still require feedback for disturbance rejection
 Often not at frequency of controller
 Superscript t for trajectory
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 Planner Outputs
 Waypoints

 Position coordinates to achieve
 With/without timing constraints

 Joined by straight line segments to create a path
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 Planner Outputs
 Motion primitives

 A sequence of predefined motions
 E.g. Straight lines and curves of defined radius
 End point of each segment easily calculated
 Often parameterized to admit an array of options
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 Block Diagrams
 Combined Planner and Controller

 Planner generates desired state and inputs at every time 
step

 Replan given new information at each time step
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 Block Diagrams
 Planner with Feedforward control 

 Planner generates a desired plan, t

 Direction to head in
 Speed of travel etc.

 Feedforward controller converts it into inputs
 Inverse dynamics needed to make conversion
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 Open loop often works
 e.g. Open loop on RC steering

 Steering has embedded position control in servo
 From robot perspective, commanded angles are achieved
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CONTROL STRUCTURE
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 Block Diagrams
 Planner with Feedback control for regulation

 Planner generates instantaneous desired state
 Rely on timescale separation for control design
 Used with high frequency inner loop control
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 Block Diagrams
 Planner with Feedback & Feedforward control

 Planner generates desired state
 Feedforward controller generates required open loop input
 Feedback controller eliminates errors from disturbances, 

unmodeled dynamics
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 Control Structures
 Linear Motion Models

 PID Control
 Linear Quadratic Regulator
 Tracking

 Nonlinear Motion Models
 Description of main methods
 Geometric driving controller
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 Assume linear dynamics
 Start with regulation problem
 Adapt to tracking afterwards
 Control Structure: 

 Pure Feedback for regulation
 Feedforward/feedback for tracking
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 Proportional-Integral-Derivative control
 e.g. for velocity control of ground robots

 Particularly effective for SISO linear systems, or 
systems where inputs can be actuated in a decoupled 
manner

 Proportional and derivative govern time response, 
stability

 Integral eliminates steady state errors, sensor biases 
and constant disturbances

 Can be used to track reference signals (up to 
bandwidth of closed loop system) 17
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 Key Developments
 Angular Accel. 

Feedback
(specific thrust)

 Command Tracking
 Frame Stiffness
 Tip Vortex 

Impingement

QUADROTOR ATTITUDE CONTROL

Controller Dynamics



TRACKING REFERENCE COMMANDS

Root mean square error of 0.65º

Attitude Angles (deg) Tracking Error
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 Linear Quadratic Regulator
 Linear Plant Model
 Quadratic penalty on deviation from desired state 

and on control input usage
 The controller optimally regulates all state errors to 0

 Derivation of optimal control will rely on 
backward induction 
 Recall Dynamic Programming 
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 Discrete time version
 Same notation as Thrun, Fox
 Define initial and final times

 Linear motion model

 Disturbances can be ignored, leads to same result

 Assume we know the state at each timestep, 
including initial state 
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LINEAR QUADRATIC REGULATOR
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 Goal: Drive all states to zero!
 Regulation, not tracking

 Cost Definition:
 Tradeoff between error in states and use of control

 LQR Problem: Find sequence of inputs that 
minimizes J
 subject to dynamics, boundary conditions
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 A note on “Quadratic Cost”
 Since state and input are vectors, quadratic penalties 

are written as

 Where xt is an nX1 vector, and Q is an nXn weighting 
matrix that decides how to penalize each state separately

 For example, suppose xt = [N E D], the position of a 
vehicle in North, East and Down coordinates.

 If we care more about errors in the horizontal than 
the vertical plane, we might pick a Q as follows:
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 Derivation
 Aim to formulate as a backward induction problem, 

and solve for minimum at each backward time step

 End condition is known
 Defined to have this quadratic form
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 Derivation
 Assume Jt is of specific quadratic form

 Find Jt-1 in the same form
 Done by rewriting the optimal cost as
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 Derivation
 Substituting in for Jt

 Incorporating dynamic constraints
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 Derivation
 Expanding

 Now Jt-1 is a function of only ut, xt-1 and Pt, but 
neither of the last two depend on ut

 The minimization over ut can be performed
 Set derivative to zero and solve for ut
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 Derivation
We rely on matrix derivatives

Transposing and grouping like terms together yields

Next, an inverse is applied to define the control law
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 Derivation
 Now we must complete the backward induction and 

demonstrate that

 To do so, we substitute in the optimal control input 
and simplify
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 Derivation
 Substituting

 Regrouping, we see Jt-1 is of the right form
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 Derivation
 Finally, substituting in for Kt yields a simplified form 

for defining the relation from Pt to Pt+1
 Will spare you the details

 As a result, we can define an update for Pt-1

 The costate update does not depend on the state.
 If you assume you will arrive at the desired end goal, can 

compute in advance 31
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 Summary of controller
 Control

 Depends on previous state and next costate

 Costate update
 Requires evolution backward in time from end state
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 Implementation of algorithm
 Set final costate based on terminal cost matrix

 Solve for costate backward in time to initial time

 Note: Both steps depend only on problem definition, 
not initial or final conditions 33
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 Implementation of algorithm
 Next, find controller to use at each time step

 Use pre-calculated costate to determine gain at time t

 Implement controller at time t using LQR gain and current 
state
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 Pictorially
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 Example: LQR
 Linear pitch controller for an aircraft

 Linearized about constant speed and altitude
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 Example: LQR
 Elevator causes moment about cg
 Tail resists rotation about cg (damping)
 Total lift and weight approximately balance
 Drag increases with elevator deflection
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 Example
 Dynamics

 State defined as 
 Angle of attack, α
 Pitch angle, Ɵ
 Pitch rate, q

 Input is elevator deflector, δ

 If velocity and altitude are held constant, continuous 
dynamics are 
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 Example
 Sample Code (discretized dynamics):
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% Solve for costate
for t=length(T)-1:-1:1

P = Q+Ad'*Pn*Ad - Ad'*Pn*Bd*inv(Bd'*Pn*Bd+R)*Bd'*Pn*Ad;
P_S(:,:,t)=P;
Pn=P;

end

% Solve for control and simulate
for t=1:length(T)-1

K = inv(Bd'*P_S(:,:,t+1)*Bd + R)*Bd'*P_S(:,:,t+1)*Ad;
u(:,t)=-K*x(:,t);
x(:,t+1) = Ad*x(:,t)+Bd*u(:,t);

end



 Example
 Cost Matrices, Q, R = I
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 Example
 Costate values

 All but (2,3) element for easy viewing
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 Steady state linear quadratic regulator (SS LQR)
 If end goal is far away, steady state solution can be 

used
 Almost always the case, infinite horizon formulation

 Algebraic Ricatti Equation
 Can be solved two ways

 Through iteration 
 Set Qf to Q and run backward in time until convergence

 Analytically
 Ask Matlab (lqr(A,B,Q,R))
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 Example: SS LQR
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 Q, R trade off  (ignoring terminal condition)
 Large inputs will drive state to zero more quickly
 Can define Q, R relative to each other
 Absolute value defines rate of convergence
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 Example: LQR Tradeoff
 Blue 

 Q = 0.01I
 R = 0.01I

 Red
 Q = 0.01I
 R = 0.1I

 Green
 Q = 0.01I
 R = I
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 Example
 Comparison of costs from three controllers
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 Stochastic formulation
 Zero mean additive Gaussian noise has no effect on 

result
 Kind of surprising, but very nice

 Separation of Estimation and Control
 Can be proven to be optimal solution
 Linear Quadratic Gaussian controller 

 LQR Combined with Kalman Filter
 LQR uses mean of Kalman belief as current state estimate
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 Tracking
 LQR control used with state and input offsets

 Includes LQR regulation to non-zero quantities
 Desired trajectory can be defined by inputs

 State and input deviations used in LQR

 Dynamics are the same, and control is now 
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 Example: LQR 
Tracking
 Sinusoidal variation

 Trajectory driven by 
desired control input 
selection

 Initial angle of attack 
error of 1 degree

 Tracking achieved on 
identical timescale to 
LQR

 Hardest part is 
defining desired 
trajectory 

 Example of 
superposition
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 Control Structures
 Linear Motion Models

 PID Control
 Linear Quadratic Regulator
 Tracking

 Nonlinear Motion Models
 Description of main methods
 Geometric driving controller
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 A field dominated by continuous time domain
 Nonlinear systems (ECE 688)

 Consider continuous nonlinear dynamics without 
disturbances

 Rely on timescale assumption
 Discrete output commands occur much more quickly 

than variation in system dynamics
 Estimation also fast enough and accurate enough to 

ignore 51
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 Let’s take a test case
 Two wheeled robot
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 Desired trajectory
 Selected to have same 

dynamics as system
 Specify desired inputs, 

and path results

53

NONLINEAR CONTROL

1 3

1 3

2

0.2

cos
sin

1

t t

t t t

d

t
t

u x
x u x

u

e
u



 
   
  
 

  
 





 Desired trajectory as Motion Primitive
 Can be used to generate a family of trajectories that 

can be used to reduce planning problem
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NONLINEAR CONTROL
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 Desired trajectory
 Track arbitrary nonlinear 

curve
 Specify desired states, and 

control must be determined

 Careful: example violates 
forward motion constraint
 Not possible to track 

exactly 55
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 Option 1: Feedback Linearization
 If motion is of the form

 It is sometimes possible to find a controller  which makes 
the map from v and x to dx/dt linear

 Not possible for two-wheeled robot 56
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 Option 2: Backstepping control
 If we have a feedback linearizable system for which 

the inversion results in large inputs, can elect to 
leave some of the nonlinearity in the plant

 If a control is known for a subsystem of derivative 
terms, then a controller for the full system can be 
developed one derivative at a time

 Relies on Lyapunov stability argument to construct 
each successive controller and ensure stability
 Not always easy to do!

 Not possible for two-wheeled robot 57
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 Option 3: Sliding Mode Control
 If a trajectory is known to converge to a desired 

equilibrium, regulation is possible
 Find a control law that drives the system to the 

trajectory
 Follow the trajectory to the equilibrium

 Is possible for two-wheeled robot
 Issues relating to control chattering can be addressed 58
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 Many nonlinear control methods exist
 Can work very well if the system is of the right form
 Usually rely on knowing dynamics and derivatives 

exactly
 Smooth derivatives required
 Modeling issues, robustness of inversion
 In practice, each nonlinear system is analyzed 

individually

 Continue with ground vehicle example
 Slightly more complicated kinematics
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 Motion Control for an automobile
 Define error dynamics relative to desired path
 Select a control law that drives errors to zero and 

satisfies input constraints
 Prove stability of controller
 Add dynamic considerations to manage unmodeled

effects
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 Goal of controller
 To track straight line trajectories 

 from one waypoint to the next
 Also works on corners, smooth paths
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 Approach
 Look at both the error in heading and the error in 

position relative to the closest point on the path
 Perpendicular distance for straight line segments
 Can become ambiguous for curves, usually well defined 

 Use the center of the front axle as a reference point

 Define an intuitive steering law to 
 Correct heading error
 Correct position error
 Obey max steering angle bounds
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 Description of vehicle
 All state variables and inputs defined relative to 

center point of front axle
 Steering relative to heading (in opposite direction): δ
 Velocity in direction of front wheels: vf

 Heading relative to trajectory: ψ
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 Description of vehicle
 Crosstrack error: e

 Distance from center of front axle to closest point on 
trajectory
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 Error Dynamics
 Heading error

 Rotation about rear wheel center point (ICR, again)
 Component of velocity perpendicular to trajectory
 Desired heading is 0
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 Error Dynamics
 Rate of change of cross track error

 Component of velocity perpendicular to trajectory
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 Proposed heading control law
 Combine three requirements

 Steer to align heading with desired heading
 Proportional to heading error

 Steer to eliminate crosstrack error
 Also essentially proportional to error
 Inversely proportional to speed
 Gain k determined experimentally
 Limit effect for large errors with inverse tan

 Maximum and minimum steering angles
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 Combined steering law

 For large heading error, steer in opposite direction
 The larger the heading error, the larger the steering 

correction
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 Combined steering law

 For large positive crosstrack error

 The larger the crosstrack error, the larger the steering 
angle required by this part of the control

 As heading changes due to steering angle, the heading 
correction counteracts the crosstrack correction, and drives 
the steering angle back to zero 69
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 Combined steering law
 The error dynamics when not at maximum steering 

angle are

 For small crosstrack errors

 Exponential decay of error
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 Example code
 Implement the error dynamics directly.
 Explore various initial conditions to understand how 

the controller works.
 Add in noise/disturbances and assess how the 

controller reacts.
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 Example – Large initial crosstrack error
 Crosstrack error of 5 meters

 Max steer 25°, speed 5 m/s
 Gain k = 2.5, Length l = 1 m
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 Example – Effect of speed variation
 Crosstrack error of 5 meters

 Speeds  2, 5, 10 m/s
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 Example – Large Error in Heading
 Max steer 25°, speed 5 m/s
 Gain k = 2.5, Length l = 1 m
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 Adjustments
 Low speed operation

 Inverse speed can cause numerical instability
 Add softening constant to controller

 Extra damping on heading
 Becomes an issue at higher speeds in real vehicle

 Steer into constant radius curves
 Improves tracking on curves by adding a feedforward term 

on heading
75

DRIVING CONTROLLER

1 ( )( ) ( ) tan
( )s f

ke tt t
k v t

    
    



 Results
 National Qualifying event
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 Create a simulation of bicycle model with noise 
on steering angle and speed inputs

 Add Stanley controller

 Experiment with low speed and damping issues

 Identify feedforward term for tracking curves
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 Option 1: Linearize about current state, control 
and apply LQR
 “Extended Linear Quadratic Regulator”

 Both matrices linearized about current control 
inputs, but are used to find the control to apply

 Therefore, must iterate solution to be linearizing
about correct point
 Inefficient, poor convergence
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 Phase portrait 
 vf = 5 m/s, k = 2.5, l = 1 

m
 Allows comparison of 

crosstrack and heading 
error evolution

 Arrows represent 
derivatives of axes

 Red lines are boundaries 
of regions

 All arrows enter interior
 Only one equilibrium
 Crosstrack error 

decreasing in interior
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 Global Convergence Proof
 Split into three regions

 Max steering angle
 Min steering angle
 Interior

 Show trajectory always exits min/max regions
 Show unique equilibrium exists at origin
 Show interior dynamics always strictly decrease 

crosstrack error magnitude
 Show that heading converges to crosstrack error 
 Show that if trajectory exits interior and enters 

min/max regions, it returns to interior with smaller 
errors
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 Velocity control law
 PI control to match planner speed recommendations 

 Curve limitations 
 Side force constraints to avoid wheel slip

 Terrain knowledge

 Combined command of brake and throttle
 Brake cylinder pressure command 
 Throttle position command
 Susceptible to chatter

 More interesting problem: deciding what speed to 
drive
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