
ME 597: AUTONOMOUS MOBILE ROBOTICS
SECTION 8 – MAPPING III

Prof. Steven Waslander

2

COMPONENTS

Actuators Vehicle Sensors

Control Estimation

Hardware

Vehicle Autonomy

Environmental Autonomy

Path
Planning Mapping

Mission Autonomy

Mission
Planning

Mission
Mapping

 The GraphSLAM algorithm
 Derivation of feature based optimization problem
 Derivation of scan based optimization problem
 Discussion of solution methods
 Implementation and Results

OUTLINE

3

TWO MAIN SLAM APPROACHES
 Online SLAM

 Filter version of the SLAM problem, maximize

 Process new information as it is received
 Generate current best estimate, rely on Markov assumption and

linearity to trust that this is the best you can do, and use the solution
in subsequent steps

 EKF SLAM, FastSLAM Occupancy Grid SLAM, etc.

 Full SLAM
 Smoothing version of the SLAM problem, maximize

 Store all information as collected, only resolve into poses and map
when needed

 Work on all information, allows for re-linearization during the
optimization process

 Can resolve correspondence as well, allowing for a more robust
solution

1: 1:(| ,)t t tp x y u

0: 1: 1:(| ,)t t tp x y u

4

FULL SLAM PROBLEM

 Full SLAM - Features
 Simultaneously determine the robot pose history and

static feature locations in the environment.

0

, 1 1

, 0:

,

, , , ,

t r

t r
i X r

tr t
t i i Y t t

t r
i Z M t

t

t

X
x

Y
m m x

Z x
x m m m x x

m
m m x

m





 
  
                                              

 

 

Robot State
at time t

ith

feature
Feature
map

Full
state

Full state
at time t

5

FULL SLAM PROBLEM

 Available information
 Inputs and Motion model

 Measurements and measurement model

 Again, we’ll assume good correspondence
information, but this is an important part of
GraphSLAM, can include correspondence as part of
the optimization

0: 1, (,)r r
t t t t tu x g x u  

1: , (,)r
t t t ty y h x m  

6

ILLUSTRATION OF THE CONSTRAINT GRAPH

7

0
rx

1 0 1(,)r rx g x u

3 1 3(,)ry h x m
1 0 1(,)ry h x m

5 3 4(,)ry h x m

4 2 4(,)ry h x m
2 0 2(,)ry h x m

5 4 5(,)r rx g x u

1

3

2

4

5

 We are interested in finding the maximum
likelihood state estimate

 Apply Bayes rule to separate out the current
measurements

GRAPHSLAM OPTIMIZATION

8

0:
0: 1: 1:max (| ,)

t
t t tx

p x y u

0: 1: 1: 0: 1: 0: 1: 1 1:

0: 1: 1 1:

(| ,) (| ,) (| ,)

 (|) (| ,)
t t t t t t t t t

t t t t t

p x y u p y x u p x y u

p y x p x y u












 Next, separate out the motion through factoring of the
probabilities of second term, since yt is not present

 These steps we repeat until the beginning of time to get

 If there is no prior information about the map, use p(xr
0)

GRAPHSLAM OPTIMIZATION

9

0: 1: 1: 0 1
1

(| ,) () (| ,) (|)
t

r r
t t tp x y u p x p x x u p y x    



 


 

0: 1: 1 1:

0: 1 1: 0: 1 1: 1 1:

1 0: 1 1: 1 1:

(| ,)

(| ,) (| ,)

(| ,) (| ,)

t t t
r
t t t t t t
r
t t t t t t

p x y u

p x x u p x y u

p x x u p x y u



  

  





0 1
1

() (| ,) (|)r r i

i

p x p x x u p y x    


 


   
 

 

 We can redefine our optimization problem as

GRAPHSLAM OPTIMIZATION

10

0:
0 1

1

max () (| ,) (|)
t

r r i

x i

p x p x x u p y x    


 


 
 
 

 

0:
0: 1: 1:max (| ,)

t
t t tx

p x y u

0:
0 1

1

min -ln () (| ,) (|)
t

r r i

x i

p x p x x u p y x    


 


  
    

 

 We can redefine our optimization problem as

GRAPHSLAM OPTIMIZATION

11

0:
0 1

1

min -ln () (| ,) (|)
t

r r i

x i

p x p x x u p y x    


 


  
    

 

 

    
0:

0

1
1 1

min J = const. - ln ()

 ln (| ,) ln (|)

tx

t t
r r i

t t t
i

p x

p x x u p y x 
 


 

  

 The assumption about additive Gaussian noise
and disturbances means that the motion and
measurement models can be expressed as
Gaussian distributions
 Motion

 Measurement

 Prior

GRAPHSLAM OPTIMIZATION

12

1
1 1

1 (,) (,)
2

1(| ,)
Tr r r r

t t t t t tx g x u R x g x ur r
t t tp x x u e


         

 

11 () ()
2(|)

Ti i
t t t ty h x Q y h xi

t tp y x e
        

1
0 0 0 0 0

1
2

0()
T

x x
p x e

 


         

1
0 0 00, 0, I      

 The negative log likelihoods therefore all take the
Mahalonobis distance form

 Motion

 Measurement

 Prior

GRAPHSLAM OPTIMIZATION

13

1
1 1 1ln (| ,) . (,) (,)

Tr r r r r r
t t t t t t t t tp x x u const x g x u R x g x u

            

1ln (|) . () ()
Ti i i

t t t t t tp y x const y h x Q y h x          

1
0 0 0 0 0 0ln () .

T
p x const x x            

 The final form of the optimization is now

 This is an unconstrained nonlinear optimization problem,
which now needs to be solved somehow.
 There is a lot of structure to the problem, because of the

sequential nature of the motion constraints and the measurement
of features at only a few instances in time.

GRAPHSLAM OPTIMIZATION

14

0:

1
0 0 0 0 0

1
1 1

1
1

1

1

min J = const.

 + (,) (,)

 + () (,)

t

T

z

t Tr r r r
t t t t t t

Ti i
t t t t

i

x x

x g x u R x g x u

y h x Q y h x







 


 








         

       

       





 The constraints on the graph can now be thought
of in a least squares sense.
 Over-determined set of constraints, optimization

aims to minimize the total violation of the full set of
constraints

 Can be considered a weighted distance minimization
 Errors minimized together based on inverse of covariance

weighting (information matrix)
 Motion

 Measurement

GRAPH CONSTRAINTS

15

1
1 1(,) (,) 0r r r r

t t t t t tx g x u R x g x u
 

         

   1(,) (,) 0t t t t t ty h x c Q y h x c   

ILLUSTRATION OF THE CONSTRAINT GRAPH

16

 0 0 0

Tr rx x

1
1 0 1 1 0 1(,) (,) 0r r r rx g x u R x g x u

         
1

3 1 3 3 1 3(,) (,) 0r ry h x m Q y h x m
         1

1 0 1 1 0 1(,) (,) 0r ry h x m Q y h x m
         

1
5 3 4 5 3 4(,) (,) 0r ry h x m Q y h x m

         

1
4 2 4 4 2 4(,) (,) 0r ry h x m Q y h x m

         1
2 0 2 2 0 2(,) (,) 0r ry h x m Q y h x m

         

1
5 4 5 5 4 5(,) (,) 0r r r rx g x u R x g x u

         

1

3

2

4

5

 For standard nonlinear optimization packages, you must provide
 Cost function

 Gradient function

 Initial Estimate of complete state (from odometry, other
sensors)

GRAPHSLAM OPTIMIZATION

17

1 1
0 0 0 0 0 1 1

1
1

1

1

J = const. + (,) (,)

 + () (,)

tT Tr r r r
t t t t t t

Ti i
t t t t

i

x x x g x u R x g x u

y h x Q y h x







  
 








                   

       





1 1
0 0 0 1 0 0

0 0

 = + (,) (,)
T Tr r r

t t
J x x g x u R g x u
x x

                

1 1
1 1 1 1

1

 =- (,) (,) (,)

 - () ()

T Tr r r r r
t t t t t t t tr r

t t

Ti
t t tr

i t

J x g x u R g x u x g x u R
x x

y h x Q h x
x

 
   



              
      

1 = - () ()
Ti

t t tm m
it t

J y h x Q h x
x x

        

0:tx

GRAPHSLAM PRELIMINARY RESULTS

18

 GraphSLAM by Thrun and Montemerlo [2006]
 Many interesting customizations to make

optimization tractable
 Linearization of models to form locally quadratic problem
 Factorization of map into robot poses to reduce graph size
 Scan points used as features with correspondence updated

inside optimization

 Full details in Chap 11 of Probabilistic Robotics

 Summarized in extra slides at the end of this
presentation
 Warning: slightly different notation used

GRAPHSLAM

19

 The GraphSLAM algorithm
 Derivation of feature based optimization problem
 Derivation of scan based optimization problem
 Discussion of solution methods
 Implementation and Results

OUTLINE

20

GRAPHSLAM WITH SCAN REGISTRATION

 GraphSLAM – Scan Registration
 No map elements are included in the state vector.
 Instead, all scans are converted into relative pose

measurements through registration

0

1

0:,

t r

t r

tr r
t t

t

t r
t

t

X
x

Y
x

Z
x x

x





 
  
  
  
   
  
       

 




Robot State
at time t

Full
state

21

GRAPHSLAM WITH SCAN REGISTRATION

22

1t tx x  tx1tx 

• True, odometry motion and resulting scans, can choose to include motion
model constraint

tx

1(,)
~ (0,)

t t t t

t t

x g x u
N R




 

GRAPHSLAM WITH SCAN REGISTRATION

23

1tx 

• ICP scan match is a measurement between current and previous pose

1(,)
~ (0,)

r r
t t t t

t t

y h x x
N Q




 

tx1tx 

o
tx

icp
tx

GRAPHSLAM WITH SCAN REGISTRATION

 Available information
 Inputs and Motion model

 Measurements and measurement model

 Where yt = 0

 The scan registration process, therefore, changes the
measurement model into a motion model
 Depends on the current and previous robot state only
 Can choose to include regular motion model too, and will be

weighted based on relative uncertainty

0: 1, (,)r r
t t t t tu x g x u  

* *
1: 1 1, (,)r r r r

t t t t t t t t ty y h x x x R x t     

24

 So the resulting negative log likelihood measurement
constraint for each ICP match is

 In general, if loop closure is detected from scan i to scan
j, we can add a measurement constraint between any two
poses

 The full set of constraints collected are once again
formed into a large optimization problem

GRAPHSLAM DERIVATION (LU/MILIOS)

25

1
1: 1: 1:ln (|) . () ()

T

t t t t t t t t t tp y x const y h x Q y h x
            

1
, , , , , , ,ln (|) . () ()

T

i j i j i j i j i j i j i jp y x const y h x Q y h x          

 Again, we take the negative log likelihood version
of the cost function

 Then solve the quadratic program however we’d
like
 Pseudo-inverse
 Gauss-Newton
 Levenberg-Marquardt

GRAPHSLAM DERIVATION (LU/MILIOS)

26

0:

1
, , , , ,

,

min J = const. () ()
t

T
i j i j i j i j i jx i j

y h x Q y h x        

 Odometry only, and with GraphSLAM, using
Sick Lidar [Lu, Milios at York in 1997].

RESULTS FROM LU AND MILIOS

27

GRAPHSLAM RESULTS

28

 GPS/Odometry map of Stanford (600m x 600m)

GRAPHSLAM RESULTS

29

 Corrected using GraphSLAM

GRAPHSLAM RESULTS

30

 3D GraphSLAM [Nuchter 2008]
 Extension is actually taking the derivatives for

linearization and moving it to 3D. Looked a lot at
what the best way is for numerical stability of the
solution when formulating the problem as a sequence
of 3DOF inertial poses.
 Euler angles
 Quaternions
 Helical motion
 Rotation Linearization
 ICP related improvements using KD-trees
 Global Relaxation, a method for revisiting scan matching

given the results of GraphSLAM

EXTENSIONS

31

 Large scale outdoor campus mapping

RESULTS FROM NUCHTER

32Odometry Without loop
closure

RESULTS FROM NUCHTER

33

With loop
closure

With global
relaxation

 Re-parametrization [Olson 2009]
 Most work uses a sequence of transformations between

global poses to capture the motion of the robot
 Olson uses an addition of differences in the pose

parameters
 This is inexact, but much faster

 Stochastic Gradient Descent
 Do forever:

 Pick a constraint
 Descend in direction of constraint’s gradient
 Scale gradient magnitude by alpha/iteration
 Clamp step size

 iteration++
 alpha/iteration→0 as t→∞

 Robustness to local concavities
 Hop around the state space, “stick” in the best one

 Good solution very fast, “perfect” solution only as t→∞

EXTENSIONS BY OLSON

34

 Olson

RESULTS FROM OLSON

35

Gauss-Seidel, 60 sec. Multi-Level
Relaxation, 8.6 sec.

Our method, 2.8 sec.

Noisy (simulated) input:

3500 poses

3499 temporal constraints

2100 spatial constraints

Ground Truth

 Grisetti further modified the structure of the
optimization by reorganizing the nodes of the
graph into a tree with extra loop closing links.
[Grisetti 2010]
 A direct extension of Olson’s formulation, using the

pose differences and stochastic gradient descent
approach

EXTENSIONS

36

 1000 nodes, less than a second to compute.

RESULTS FROM TORO

37

RESULTS FROM TORO

38

RESULTS FROM TORO

39

Original

Optimized

 Fast Backend Solver
[Grisetti 2011]

 Takes the best of
previous methods

 Works on wide range of
problems

 Uses standard linear
algebra packages

 Easily extensible,
modifiable

 Available on OpenSLAM
 Integrated into ROS

CURRENT STANDARD – G2O

40

RESULTS FROM NASA SAMPLE RETURN

41

STATE OF THE ART – [KINTINUOUS 2013]

42

EXTRA SLIDES

43

GRAPHSLAM SOLUTION PIPELINE
 Feature extraction

 Identify features in images (SIFT, SURF) or use laser scan
points as features

 Feature correspondence
 Standard visual techniques based on descriptors, proximity

based such as ICP and many others
 Graph construction

 Linearize measurement and motion information and
populate a sparse matrix with constraint weightings based
on covariance inverse (information matrix).

 Graph reduction
 Reduce graph size by eliminating features, done by

converting each feature measurement to an information
gain on each pose from which it was measured

 Optimization
 Any method you wish that can solve a sparse quadratic

program (least squares, conjugate gradient, Levenberg-
Marquardt) 44

GRAPHSLAM OFFLINE SOLUTION PIPELINE

45

Feature
Extraction

(Visual, point
cloud)

Feature
correspondence

(visual, ICP,
others)

Full graph
construction/
Linearization

(pose and
features)

Graph reduction

(pose only)

Pose
Optimization

(Least squares)

SLAM Front end

SLAM back end

Repeat until convergence

Iterate if necessary

 There are four steps that result in Thrun’s
version of the GraphSLAM optimization

1. Initialize: find an initial estimate of the trajectory,
through odometry, raw ICP, whatever.

2. Linearize: given the current estimate, find Jacobians
of measurement and motion information, and
construct the full graph.

3. Reduce: eliminate the features from the graph
through an explicit step, reducing graph size

4. Solve: solve the quadratically constrained
optimization to maximize probability of pose
estimate, given measurements, inputs,
correspondences.

GRAPHSLAM DERIVATION (THRUN)

46

GRAPHSLAM OFFLINE SOLUTION PIPELINE

47

Scan Processing Scan Matching

Pose graph
construction

through
linearization

Pose
Optimization

SLAM Front end

SLAM back end

Repeat until convergence

Iterate if necessary

 Derivation proceeds as follows:
 Derivation of proposed optimization method

 Define initial solution
 Linearize measurement and motion models about current estimate

of solution
 Restate quadratic cost that results
 Figure out how to reduce the graph to eliminate features, using

marginals trick (Schur complement)
 Present simple method for solving for the path and map
 Repeat as necessary, updating initial solution each time through
 Can add an outer loop that re-evaluates correspondence too

GRAPHSLAM DERIVATION (THRUN)

48

 Motion constraint
information

 Measurement constraint
information

POPULATION OF SPARSE GRAPH MATRIX

49

  
    

   
    
   
   
 
 
 
 
 
 
  

0:tx

0:tx

m

m

   
   

  
    
   
 
 
  
 
    
  
 

   
   

0:tx

m

 A simple first order Taylor series expansion of
g(x,u) and h(x,c) will result in a quadratic cost
function
 We can therefore proceed with sequential quadratic

programming
 Similar to the EKF, the linearization is as follows

LINEARIZATION FOR COST DEFINITION

50

1 1

1 1 1 1 1
1

1 1 1

(,) (,) (,) ()

(,) ()
t t

t t t t t t t t
t x

t t t t t

g x u g u g x u x
x

g u G x


 

 
 

    
 

  

  


   

(,) (,) (,) ()

(,) ()
t t

i i i
t t t t t t t t

t z

i
t t t t t

h z c h c h z c z
z

h c H z


 

 


  


   

 Substituting into the cost function gives

 Which has many constant terms (mean is known)
that can be combined into one.

LINEARIZATION FOR MATRIX DEFINITION

51

   

1
0 0 0 0 0

1
1 1 1 1 1 1

1

 J = const.

 + (,) () (,) ()

 + (,) () (,) ()

T

T
t t t t t t t t t t t t

t
Ti i i i

t t t t t t t t t t t t
t i

x x

x g u G x R x g u G x

y h c H z Q y h c H z

 

   

   




     



         

       

             





 Rearranging, we can write the cost as

 Which is of the form, a simple least squares problem.

 Where the full information matrix and vector are the two
coefficients in the cost function

LINEARIZED GRAPHSLAM OPTIMIZATION

52

 

 

1 1
0 0 0 1: 1:

1
1: 1 1

1 1

J = const. 1
1

 (,)
1

 + (,)

T
T T Tt

t t t t t
t

T
T t

t t t t t t

T iT i T iT i i i
t t t t t t t t t t t

t i

G
x x x R G x

G
x R g u G

z H Q H z z H Q y h c H

 

 

 
 


  

 

 
    

 
 

  
 

    





0: 0: 0:
T T

t t tJ const z z z    

 We need to construct both the information vector and
matrix
 All constraints can be added independently in negative log

likelihood form, taking care to place the additions in the
correct rows and column (per initial diagram)

 Prior

 Each motion step

 Each measurement

CONSTRUCTING THE COST FUNCTION

53

0  

 

 

1

1
1 1

1
1

(,)
1

T
Tt
t

T
t

t t t t

G
R G

G
R g u G   




 

 
    

 
 

   
 

1

1 (,)

iT i
t t

iT i i i
t t t t t t

H Q H

H Q y h c H   





  

     

 So, after linearization, we can form a quadratic
cost matrix in all of the decision variables, which
looks like

POPULATION OF SPARSE GRAPH MATRIX

54

0:tx

0:tx

m

m
    
     

    
      
     
   
  
 
    
  
 

   
   

 

 The next big step is to eliminate all the features
from the cost formulation, to reduce the size of
the optimization problem

 The full SLAM posterior can be factored

 Where we can find the marginal pose distribution
by integrating over map variables

GRAPH REDUCTION

55

0: 1: 1: 1: 0: 1: 1: 1: 0: 1: 1: 1:(| , ,) (| , ,) (| , , ,)t t t t t t t t t t t tp z y u c p x y u c p m x y u c

0: 1: 1: 1: 0: 1: 1: 1:(| , ,) (| , ,)t t t t t t t tp x y u c p z y u c dm 

 To find this marginal probability, we need a
famous lemma:
 Marginals of a multivariate distribution (Schur

complement, inversion lemma):

GRAPH REDUCTION

56

Let the probability distribution (,) over the random variables
, be a Gaussian represented in the information form:

 and .

If is invertible, the marginal ()

xx xy x

yx yy y

yy

p x y
x y

p x





    

         


1 1

is a Gaussian whose

information form is
 and xx xx xy yy yx x x xy yy y           

 The elimination of features proceeds by using
this lemma
 Applying the marginalization lemma

 But this seems to require an inversion the size of the map
features

 Luckily, each feature is independent of all other features, so it
is a block diagonal inversion, that can be done one feature at a
time

GRAPH REDUCTION

57

0: 0: 0: 0:

0:

0: 0: 0: 0: 0: 0:

0: 0: 0:

1

1

 and t t t t

t

t t t t t t

t t t

x x x m x

mx mm

x x x x x m mm mx

x x x m mm m

m






  





    
          
     

  

0: 0: 0: 0: 0: 0:

0: 0: 0:

1

1

t t t t t i i i i t

t t t i i i i

x x x x x m m m m x
i

x x x m m m m
i

  





      

   





0:
The matrix is

nonzero only for poses
in which the feature
was measured.

t ix m

 Finally, we solve the reduced quadratic program by simply
inverting the information matrix, and recover the robot
poses

 This inversion would be very fast if every feature was
observed at only one time, but is actually a little dense due
to loop closures. We have choices, but all must do some
serious work to get a solution.
 Pseudo-inverse
 Gauss-Newton
 Levenberg-Marquardt

SOLVING THE REDUCED OPTIMIZATION

58

0: 0: 0: 0:

0: 0: 0: 0:

1
t t t t

t t t t

x x x x

x x x x 

  

 

 To recover the map (if needed), we want to solve
for the conditional map probability

 To find this conditional probability, we need the
conditioning lemma

SOLVING THE REDUCED OPTIMIZATION

59

Let the probability distribution (,) over the random variables
, be a Gaussian represented in the information form:

 and .

The conditional (|) is a Gaussian who

xx xy x

yx yy y

p x y
x y

p x y





    

         
se information matrix is

and whose information vector is
xx

x xy y




0: 1: 1: 1:(| , , ,)t t t tp m x y u c

 Application of the lemma yields

 The feature locations are finally computed by
again applying the fact that each feature is
independent, so that we get a simple feature by
feature reconstruction
 Define the set of poses at which feature i was

observed as (i)

RECOVERING THE MAP

60

 

1

() ()

i i i i

i i i i i

m m m m

m m m m m i i   

  

  

 0: 0:

1

t t

mm mm

m mm m mx x  

  

  

NUCHTER’S OPENSLAM RESULTS

61

