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 The GraphSLAM algorithm
 Derivation of feature based optimization problem
 Derivation of scan based optimization problem
 Discussion of solution methods
 Implementation and Results

OUTLINE
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TWO MAIN SLAM APPROACHES
 Online SLAM

 Filter version of the SLAM problem, maximize

 Process new information as it is received
 Generate current best estimate, rely on Markov assumption and 

linearity to trust that this is the best you can do, and use the solution 
in subsequent steps

 EKF SLAM, FastSLAM Occupancy Grid SLAM, etc.

 Full SLAM
 Smoothing version of the SLAM problem, maximize

 Store all information as collected, only resolve into poses and map 
when needed

 Work on all information, allows for re-linearization during the 
optimization process

 Can resolve correspondence as well, allowing for a more robust 
solution
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FULL SLAM PROBLEM

 Full SLAM - Features
 Simultaneously determine the robot pose history and 

static feature locations in the environment.
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FULL SLAM PROBLEM

 Available information
 Inputs and Motion model 

 Measurements and measurement model

 Again, we’ll assume good correspondence 
information, but this is an important part of 
GraphSLAM, can include correspondence as part of 
the optimization
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ILLUSTRATION OF THE CONSTRAINT GRAPH
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 We are interested in finding the maximum 
likelihood state estimate

 Apply Bayes rule to separate out the current 
measurements

GRAPHSLAM OPTIMIZATION
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 Next, separate out the motion through factoring of the 
probabilities of second term, since yt is not present

 These steps we repeat until the beginning of time to get

 If there is no prior information about the map, use p(xr
0)

GRAPHSLAM OPTIMIZATION
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 We can redefine our optimization problem as

GRAPHSLAM OPTIMIZATION
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 We can redefine our optimization problem as

GRAPHSLAM OPTIMIZATION
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 The assumption about additive Gaussian noise 
and disturbances means that the motion and 
measurement models can be expressed as 
Gaussian distributions
 Motion 

 Measurement

 Prior

GRAPHSLAM OPTIMIZATION
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 The negative log likelihoods therefore all take the 
Mahalonobis distance form

 Motion 

 Measurement

 Prior

GRAPHSLAM OPTIMIZATION
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 The final form of the optimization is now

 This is an unconstrained nonlinear optimization problem, 
which now needs to be solved somehow.  
 There is a lot of structure to the problem, because of the 

sequential nature of the motion constraints and the measurement 
of features at only a few instances in time.  

GRAPHSLAM OPTIMIZATION
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 The constraints on the graph can now be thought 
of in a least squares sense.
 Over-determined set of constraints,  optimization 

aims to  minimize the total violation of the full set of 
constraints

 Can be considered a weighted distance minimization
 Errors minimized together based on inverse of covariance 

weighting (information matrix)
 Motion

 Measurement

GRAPH CONSTRAINTS
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ILLUSTRATION OF THE CONSTRAINT GRAPH
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 For standard nonlinear optimization packages, you must provide
 Cost function

 Gradient function

 Initial Estimate of complete state (from odometry, other 
sensors)

GRAPHSLAM OPTIMIZATION
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GRAPHSLAM PRELIMINARY RESULTS
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 GraphSLAM by Thrun and Montemerlo [2006]
 Many interesting customizations to make 

optimization tractable
 Linearization of models to form locally quadratic problem
 Factorization of map into robot poses to reduce graph size
 Scan points used as features with correspondence updated 

inside optimization

 Full details in Chap 11 of Probabilistic Robotics

 Summarized in extra slides at the end of this 
presentation
 Warning: slightly different notation used

GRAPHSLAM
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 The GraphSLAM algorithm
 Derivation of feature based optimization problem
 Derivation of scan based optimization problem
 Discussion of solution methods
 Implementation and Results

OUTLINE
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GRAPHSLAM WITH SCAN REGISTRATION

 GraphSLAM – Scan Registration
 No map elements are included in the state vector.
 Instead, all scans are converted into relative pose 

measurements through registration
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GRAPHSLAM WITH SCAN REGISTRATION
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GRAPHSLAM WITH SCAN REGISTRATION
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GRAPHSLAM WITH SCAN REGISTRATION

 Available information
 Inputs and Motion model 

 Measurements and measurement model

 Where yt = 0

 The scan registration process, therefore, changes the 
measurement model into a motion model
 Depends on the current and previous robot state only
 Can choose to include regular motion model too, and will be 

weighted based on relative uncertainty
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 So the resulting negative log likelihood measurement 
constraint for each ICP match is 

 In general, if loop closure is detected from scan i to scan 
j, we can add a measurement constraint between any two 
poses 

 The full set of constraints collected are once again 
formed into a large optimization problem

GRAPHSLAM DERIVATION (LU/MILIOS)
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 Again, we take the negative log likelihood version 
of the cost function

 Then solve the quadratic program however we’d 
like
 Pseudo-inverse
 Gauss-Newton
 Levenberg-Marquardt

GRAPHSLAM DERIVATION (LU/MILIOS)
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 Odometry only, and with GraphSLAM, using 
Sick Lidar [Lu, Milios at York in 1997].

RESULTS FROM LU AND MILIOS
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GRAPHSLAM RESULTS
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 GPS/Odometry map of Stanford (600m  x 600m)

GRAPHSLAM RESULTS
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 Corrected using GraphSLAM

GRAPHSLAM RESULTS
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 3D GraphSLAM [Nuchter 2008]
 Extension is actually taking the derivatives for 

linearization and moving it to 3D. Looked a lot at 
what the best way is for numerical stability of the 
solution when formulating the problem as a sequence 
of 3DOF inertial poses.
 Euler angles
 Quaternions
 Helical motion 
 Rotation Linearization
 ICP related improvements using KD-trees
 Global Relaxation, a method for revisiting scan matching 

given the results of GraphSLAM

EXTENSIONS
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 Large scale outdoor campus mapping

RESULTS FROM NUCHTER

32Odometry Without loop 
closure



RESULTS FROM NUCHTER
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 Re-parametrization [Olson 2009]
 Most work uses a sequence of transformations between 

global poses to capture the motion of the robot
 Olson uses an addition of differences in the pose 

parameters 
 This is inexact, but much faster

 Stochastic Gradient Descent
 Do forever:

 Pick a constraint
 Descend in direction of constraint’s gradient
 Scale gradient magnitude by alpha/iteration
 Clamp step size

 iteration++
 alpha/iteration→0 as t→∞

 Robustness to local concavities
 Hop around the state space, “stick” in the best one

 Good solution very fast, “perfect” solution only as t→∞ 

EXTENSIONS BY OLSON
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 Olson

RESULTS FROM OLSON
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Our method, 2.8 sec.
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 Grisetti further modified the structure of the 
optimization by reorganizing the nodes of the 
graph into a tree with extra loop closing links. 
[Grisetti 2010]
 A direct extension of Olson’s formulation, using the 

pose differences and stochastic gradient descent 
approach

EXTENSIONS
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 1000 nodes, less than a second to compute.

RESULTS FROM TORO
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RESULTS FROM TORO
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RESULTS FROM TORO
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 Fast Backend Solver 
[Grisetti 2011]

 Takes the best of 
previous methods

 Works on wide range of 
problems

 Uses standard linear 
algebra packages 

 Easily extensible, 
modifiable 

 Available on OpenSLAM
 Integrated into ROS

CURRENT STANDARD – G2O
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RESULTS FROM NASA SAMPLE RETURN
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STATE OF THE ART – [KINTINUOUS 2013]
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EXTRA SLIDES
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GRAPHSLAM SOLUTION PIPELINE
 Feature extraction

 Identify features in images (SIFT, SURF) or use laser scan 
points as features

 Feature correspondence
 Standard visual techniques based on descriptors, proximity 

based such as ICP and many others
 Graph construction

 Linearize measurement and motion information and 
populate a sparse matrix with constraint weightings based 
on covariance inverse (information matrix).

 Graph reduction
 Reduce graph size by eliminating features, done by 

converting each feature measurement to an information 
gain on each pose from which it was measured

 Optimization
 Any method you wish that can solve a sparse quadratic 

program (least squares, conjugate gradient, Levenberg-
Marquardt) 44



GRAPHSLAM OFFLINE SOLUTION PIPELINE
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 There are four steps that result in Thrun’s
version of the GraphSLAM optimization

1. Initialize: find an initial estimate of the trajectory, 
through odometry, raw ICP, whatever.

2. Linearize: given the current estimate, find Jacobians
of measurement and motion information, and 
construct the full graph.

3. Reduce: eliminate the features from the graph 
through an explicit step, reducing graph size

4. Solve: solve the quadratically constrained 
optimization to maximize probability of pose 
estimate, given measurements, inputs, 
correspondences.

GRAPHSLAM DERIVATION (THRUN)
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GRAPHSLAM OFFLINE SOLUTION PIPELINE
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 Derivation proceeds as follows:
 Derivation of proposed optimization method

 Define initial solution
 Linearize measurement and motion models about current estimate 

of solution
 Restate quadratic cost that results
 Figure out how to reduce the graph to eliminate features, using 

marginals trick (Schur complement)
 Present simple method for solving for the path and map
 Repeat as necessary, updating initial solution each time through
 Can add an outer loop that re-evaluates correspondence too

GRAPHSLAM DERIVATION (THRUN)
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 Motion constraint 
information

 Measurement constraint
information

POPULATION OF SPARSE GRAPH MATRIX

49

  
    

   
    
   
   
 
 
 
 
 
 
  

0:tx

0:tx

m

m

   
   

  
    
   
 
 
  
 
    
  
 

   
   

0:tx

m



 A simple first order Taylor series expansion of 
g(x,u) and h(x,c) will result in a quadratic cost 
function
 We can therefore proceed with sequential quadratic 

programming
 Similar to the EKF, the linearization is as follows

LINEARIZATION FOR COST DEFINITION
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 Substituting into the cost function gives

 Which has many constant terms (mean is known) 
that can be combined into one.

LINEARIZATION FOR MATRIX DEFINITION
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 Rearranging, we can write the cost as

 Which is of the form, a simple least squares problem.

 Where the full information matrix and vector are the two 
coefficients in the cost function
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 We need to construct both the information vector and 
matrix
 All constraints can be added independently in negative log 

likelihood form, taking care to place the additions in the 
correct rows and column (per initial diagram)

 Prior

 Each motion step

 Each measurement

CONSTRUCTING THE COST FUNCTION
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 So, after linearization, we can form a quadratic 
cost matrix in all of the decision variables, which 
looks like

POPULATION OF SPARSE GRAPH MATRIX
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 The next big step is to eliminate all the features 
from the cost formulation, to reduce the size of 
the optimization problem

 The full SLAM posterior can be factored 

 Where we can find the marginal pose distribution 
by integrating over map variables

GRAPH REDUCTION
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 To find this marginal probability, we need a 
famous lemma:
 Marginals of a multivariate distribution (Schur

complement, inversion lemma):
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 The elimination of features proceeds by using 
this lemma
 Applying the marginalization lemma

 But this seems to require an inversion the size of the map 
features

 Luckily, each feature is independent of all other features, so it 
is a block diagonal inversion, that can be done one feature at a 
time
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 Finally, we solve the reduced quadratic program by simply 
inverting the information matrix, and recover the robot 
poses

 This inversion would be very fast if every feature was 
observed at only one time, but is actually a little dense due 
to loop closures.  We have choices, but all must do some 
serious work to get a solution.
 Pseudo-inverse
 Gauss-Newton
 Levenberg-Marquardt

SOLVING THE REDUCED OPTIMIZATION
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 To recover the map (if needed), we want to solve 
for the conditional map probability

 To find this conditional probability, we need the 
conditioning lemma

SOLVING THE REDUCED OPTIMIZATION
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 Application of the lemma yields

 The feature locations are finally computed by 
again applying the fact that each feature is 
independent, so that we get a simple feature by 
feature reconstruction
 Define the set of poses at which feature i was 

observed as (i)
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