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 Localization
 EKF
 Particle

 Mapping
 Occupancy Grid based

 Simultaneous Localization and Mapping
 EKF SLAM
 Particle based FastSLAM
 Occupancy Grid SLAM
 Iterated Closest Point Scan Matching
 Pose Graph Optimization
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OUTLINE



 SLAM
 Given

 Motion model
 Measurement model
 Uniquely identifiable static features
 Vehicle inputs, ut

 Measurements to some features, yt

 Find
 Vehicle state, xt

r

 Feature locations, mi

 Relative calculation, coordinate system determined upon 
initialization

 Significantly larger estimation problem than straight 
localization
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SIMULTANEOUS LOCALIZATION AND MAPPING



 SLAM Types
 Online SLAM

 Estimates the current state and the map given all 
information to date

 Most useful for a moving vehicle that needs to estimate its 
state relative to its environment in real time

 Usually run online

 Full SLAM
 Estimates the entire state history and the map given all 

information 

 Most useful for creating maps from sensor data after the fact
 Usually run in batch mode
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 The four main SLAM Algorithms in Thrun
 EKF/UKF SLAM (Thrun et al. Chap 10)

 Extension of EKF localization to online SLAM problem
 Very commonly used, especially for improving vehicle state 

estimation when static features are available

 GraphSLAM (Thrun et al. Chap 11)
 Solves the full SLAM problem by storing data as a set of 

constraints between variables 
 Can create maps based on 1000s of features, not possible 

with EKF due to matrix inversion limitations
 Many variations, all boil down to a nonlinear optimization 

that needs to be fast to be useful
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SLAM



 The four main SLAM Algorithms in Thrun
 Sparse Extended Information Filter SLAM (Thrun et 

al. Chap 12)
 Approximate application of Extended Information Filter to 

SLAM problem
 Can create a sparse (nearly diagonal) information matrix, 

which also enables tracking many features, constant time 
updates

 FastSLAM (Thrun et al. Chap 13)
 Solves the online SLAM problem simultaneously by 

combining particles and EKFs
 Rao-Blackwellized particle filters

 Can track multiple correspondences with different particles
 Shows robustness to incorrect correspondence
 Most active area of research, large scale mapping
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 Our focus is the online SLAM problem
 EKF SLAM

 Quick SLAM solution, great for improving vehicle state 
estimation from information about the environment

 Not too robust to incorrect feature correspondence
 Be sure to pick features wisely 

 FastSLAM
 A more robust approach, particularly with respect to 

feature correspondence
 Computationally more expensive, especially with higher 

dimension vehicle state
 Occupancy Grid SLAM

 FastSLAM with mapping by each pixel

 But, I’ll introduce GraphSLAM too
 Predominant area of research over the last decade
 Super-impressive results
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 A brittle problem, regardless of algorithm
 Attempting to estimate nT + fM states using MT, 

2MT, 3MT measurements, depending on sensor
 T is the number of time steps
 M is the number of features
 n is the number of vehicle state variables
 f is the number of map feature variables

 Direct sensing of vehicle states can significantly 
improve estimation
 GPS, odometry information very effective at reducing 

uncertainty
 Use what you can
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SLAM



 Variables
 Full state

 Vehicle states
 Feature locations
 Signatures

 Not included here

 Belief: Full state mean and covariance
 Components for vehicle state and map state 
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EKF SLAM
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 Once again, investigate with a specific vehicle 
and measurement model

 Motion model for robot only
 Feature are static, no motion
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 Measurement Model
 Relative range and/or bearing to numerous features 

mi in  field of view
 Define

 Then 

 Noise 12
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 Vehicle Prior
 In localization or mapping, coordinate system was 

clearly defined
 Localization relative to fixed map
 Mapping relative to known vehicle motion

 In pure SLAM, neither is known, so coordinate 
system is arbitrary choice
 Assume vehicle starts at origin with zero heading
 Know this with absolute certainty
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 Map Prior
 No clue where any of the features are

 Theoretically, we could say

 In practice, not very useful
 Linearization with all features assumed to be at the 

origin performs very poorly
 Inversion with infinite diagonal numerically difficult
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EKF SLAM
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 Map Prior
 Preferred method

 Initialize each feature location based on first set of 
measurements
 Measurements must uniquely define feature position
 Bearing and range + vehicle state required

 Can define covariance based on measurement noise and 
vehicle state uncertainty, or predefine explicitly

 If initial measurements are insufficient, can accumulate 
multiple measurements before initialization
 Bearing only SLAM (for vision data) 15
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 A sketch
 A vehicle and a set of features, perfect knowledge of 

vehicle location initially 

 The vehicle measures the location of two features and 
moves one time step forward
 Measurement and motion uncertainty
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EKF SLAM



 A sketch
 At the next time step, two new features are observed 

with more uncertainty
 Combination of vehicle and measurement uncertainty
 Motion uncertainty continues to grow
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EKF SLAM



 A sketch
 The next set of measurements includes a feature that 

has already been observed
 The vehicle uncertainty can be reduced
 The additional features are not as uncertain

 The result: as old features are discarded and new 
features added, uncertainty grows 18
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 EKF SLAM Algorithm
 Prediction step

 Only vehicle states and covariance change
 Map states and covariance are unaffected
 Quick 3X3 update
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 Linearization of Motion Model, as before
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 EKF SLAM Algorithm
 Measurement Update, for feature i

 Since each measurement pair depends on one feature, 
independence means updates can be performed one feature 
at a time
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 Linearization of Measurement Model

 Derivatives w.r.t. mi in appropriate columns
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 Example
 22 features in two lines
 Same circular motion as for localization example
 Field of view similar to camera

 +/- 45 degrees
 5 m range
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 Example
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EKF SLAM
True state            -o-
Belief                    -x-
Measurement     ___
Features               O



 Discussion
 Vehicle state error correlates feature estimates

 If vehicle state known exactly (mapping) features could be 
estimated independently

 Knowing more about one feature improves estimates about 
entire map

 Covariance matrix divided in 3X3 structure
 Vehicle state and two sets of features
 Each row of features strongly connected
 Rows weakly connected by uncertain multiple time step 

motion 

 Growth in state uncertainty without loop closure 
 When first feature is re-observed, all estimates improve
 Correction information carried in covariance matrix 25

EKF SLAM



 Wrong correspondence can be catastrophic
 Linearization about wrong point can cause deterioration of 

estimate, divergence of covariance

 Strategies
 Provisional Feature list

 Features on the list are tracked identically to other features
 Not used to update vehicle state or  vehicle/map covariance
 Once trace of covariance drops below threshold, incorporate feature into 

map

 Feature selection
 Features are selected so as to avoid correspondence issues

 Spatially distributed
 Distinct signatures 

 Feature Tracking and windowed correspondence
 Features can be expected to move in a consistent way from frame to 

frame, so only a subset of features need be considered for matches
26
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 Localization
 EKF
 Particle

 Mapping
 Occupancy Grid based

 Simultaneous Localization and Mapping
 EKF SLAM
 Particle based FastSLAM
 Occupancy Grid SLAM
 Iterated Closest Point Scan Matching
 Pose Graph Optimization
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 Divergence Issue with EKF primarily due to 
linearization about incorrect estimate
 Fails when linearization is a poor approximation

 Features at close range accentuate issue

 Particle filters avoid this linearization
28

FASTSLAM



 Recall Particle Filter Algorithm 
1. For each particle in 

1. Propagate sample forward using motion model (sampling) 

2. Calculate weight                                                (importance)

3. Store in interim particle set

2. Normalize weights
3. For j = 1 to I

1. Draw index i with probability                         (resampling)
1. Add to final particle set 29
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 Direct Particle Filter approach
 Applied to example SLAM problem, state is too large 

to capture distributions with particles
 Exponential growth in number of particles needed per 

dimension of the problem

 SLAM problem has significant structure
 Map features do not move
 Measurements depend on only the vehicle state and one 

feature

 Need a way to avoid issues of EKF and particle filters
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FASTSLAM



 Rao-Blackwellized Particle Filter
 The vehicle state will be estimated with particles
 Each feature will be estimated with an independent 

EKF
 Each particle has the vehicle state and a bank of 

EKFs, one for each feature in the map
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 Key Insight
 If vehicle state is known exactly, feature locations 

can be estimated independently

 In a particle filter, each particle represents an exact 
belief about the state

 Representing vehicle state belief with particles allows 
independent estimation of features for each particle
 M+1 separate independent beliefs
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 Hidden Markov Model
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 Feature Correspondence
 Can also be incorporated, each particle need not use 

the same correspondence decisions
 Avoids issue with EKF
 Larger estimation problem, more particles needed 
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FASTSLAM – PREDICTION STEP

Particle 1

Particle 2

Particle 3

Feature #1
Filter

Feature #2
Filter
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Courtesy of Thrun et al.



FASTSLAM – MEASUREMENT UPDATE

Particle 1

Particle 2

Particle 3

Feature #1
Filter

Feature #2
Filter
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Courtesy of Thrun et al.



FASTSLAM – SENSOR UPDATE

Particle 1

Particle 2

Particle 3

Weight = 0.8

Weight = 0.4

Weight = 0.1
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 Prediction Step
 Like Particle filter localization, propagate each 

particle through motion model with disturbance 
sample

 O(I), linear in the number of particles
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 Measurement Update
 For each particle

 Initialize EKF for each newly observed feature
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 Measurement Update
 For each particle

 Update individual EKF for each previously observed feature
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 Measurement Update
 Importance sampling

 Particle Weights are probability of measurement given 
particle state

 Found by linearizing about particle state

 Resampling as before
 Draw I samples from existing particles based on 

measurement model weights 41
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 Example
 Two wheeled robot motion, going in a circle
 Range and bearing measurements to features in view

 5 m range, 50 deg FOV
 100 particles, all means displayed

42
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 Example
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FASTSLAM

44

 Victoria Park
 4 km traverse
 < 5 m RMS 

position error
 100 particles

Dataset courtesy of University of Sydney
Results courtesy of Thrun et al.

Blue = GPS
Yellow = FastSLAM



FASTSLAM
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 Results from Victoria Park data set
 Raw odometry vs FastSLAM with GPS ground truth



FASTSLAM

46

 Results from Victoria Park data set
 FastSLAM with GPS ground truth on satellite image
 Ignoring odometry data, still successful



 FastSLAM 2.0
 Improves motion update sampling to include 

measurement information
 Useful when motion is relatively uncertain compared to 

measurements
 Results in a better proposal distribution, which means less 

likely to encounter particle deprivation 
 Target distribution is closer to proposal
 More particles present good estimates of the true state
 More particles are weighted highly meaning more make 

it through resampling

 Allows us to improve accuracy of estimation and/or reduce 
the number of particles needed

 Useful for occupancy grid SLAM 47

FASTSLAM



 Localization
 EKF
 Particle

 Mapping
 Occupancy Grid based

 Simultaneous Localization and Mapping
 EKF SLAM
 Particle based FastSLAM
 Occupancy Grid SLAM
 Iterated Closest Point Scan Matching
 Pose Graph Optimization
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 Example
 Bruceton 

Research Mine
 Results courtesy 

of Dirk Haehnel
 Laser data 

collected while 
driving through 
underground 
mine

49
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 Occupancy grid based FastSLAM: gmapping!
 Creates complete map of the environment within 

each particle

 Each cell becomes a feature with a probability of 
being occupied

 Motion predictions can be improved by employing 
scan registration techniques

 Weights are determined using measurement model, 
resampling as before

 Occupancy probabilities are updated through inverse 
measurement model 51

OCCUPANCY GRID SLAM



For each 
particle
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OCCUPANCY GRID SLAM

1. Scan 
Registration

2. Motion 
Update

3. Weighting

Resampling

Relative 
Motion 
Estimate Updated 

Particles

New 
Scan

Map 
Update

 Occupancy grid based FastSLAM
 Three new elements



 Improved prediction step using scan registration
 Disturbance distribution is dependent on scan and 

map
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 Prediction step using scan registration
 The idea is to include the current measurement 

information when updating particle location, but 
before incorporating it in the map
 Apply measurement to robot pose only, save map update for 

later
 Measurement model far more precise than motion model

54
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 Prediction step using scan registration
 Use scan registration to define transformation

 Iterative Closest Point: Given two laser scans, 
optimize the transformation between them by 
corresponding the closest points and minimizing the 
mean squared error.

 Variants/Improvements
 Generalized Iterative Closest Point : match normals
 Normal Distribution Transform : convert to grid of 

Gaussians
 Feature correspondence: only match feature points
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 Scan Registration Example – ICP matlab code

56

OCCUPANCY GRID SLAM



 Scan Registration Example – ICP on laser data
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 Prediction step using scan registration
 Result of scan registration

 Rotation and translation needed to match new scan to 
previous scan or current map.

 Provides a transformation to apply to particle robot state

 Must also derive disturbance distribution from which to 
sample  a disturbance to apply to each particle
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 Prediction step using scan registration
 In order to combine measurement model and motion 

model, need to evaluate both over region around scan 
registration estimate

 Applying the Markov assumption

 And Bayes Theorem + Markov
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 Prediction step using scan registration
 Create samples around scan point, and propagate 

through motion and measurement models using 
Gaussian approximation
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 Prediction step using scan registration
 Measurement model

 Given scan registration result, compute for each particle

 Done by multiplying probabilities in each cell traversed by 
scan
 Let       be the measurement {occupied or not occupied} 

for each cell j along the ray defined by a measurement k

 Then the likelihood of a measurement given the map is
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 Weighting 
 Importance sampling

 Particle Weights can also be computed quickly through the 
following update equation

 Derived from definitions of

 Where π is the improved proposal distribution discussed 
above 62
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 Resampling
 Most dangerous step of Particle filter update

 Can lose good particles, lead to deprivation
 Only perform resampling updates when necessary

 Adaptive resampling based on threshold

 Reaches a maximum when all particles are equally 
weighted

 Becomes smaller as some particles are more heavily 
weighted than others
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 Map Update
 Since each particle has a known position, standard 

mapping update applies

 The log odd ratio at t is the sum of the ratio at t-1 + the 
inverse measurement ratio – the initial belief

 Once again relies on inverse measurement model

 Can be delayed to after resampling to reduce number 
of updates required
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 Example Results for gmapping
 Intel Research Lab

 28 m X 28 m, 2D SICK Lidar
 Only 15 particles needed for maximum accuracy
 Can be run in real time

 MIT Kilian Court
 The infinite corridor, 250m X 215m
 60-80 particles used
 Nested loops
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 Intel Results – Map using only integrated wheel 
odometry (Dirk Haehnel)
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 Results of Occupancy Grid SLAM with standard 
motion model 
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 Results of Occupancy Grid SLAM with improved 

proposal distribution (motion and measurement) 



 Results of Occupancy Grid SLAM with improved 
proposal distribution
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 MIT Results – 80 particles
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 Localization
 EKF
 Particle

 Mapping
 Occupancy Grid based

 Simultaneous Localization and Mapping
 EKF SLAM
 Particle based FastSLAM
 Occupancy Grid SLAM
 Iterated Closest Point Scan Matching
 Pose Graph Optimization
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 Widely used for 3D modeling, robotics, map 
alignment, image stitching
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 Widely used for 3D modeling, robotics, map 
alignment, image stitching
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 Let M be a model (reference) point set. 
 Let S be a scene (target) point set.

 We assume for now that:
 NM = NS.
 Each point Si correspond to a point in Mi .
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 The transformation between the two scans is 
represented as a rotation and a translation

 If correct correspondences are known, can find 
relative rotation/translation that minimizes error
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 Given two scans and an initial transformation:
 Transform scene point set into model frame
 Find nearest neighbour correspondences
 Sum quadratic distance error between points
 Calculate descent direction and improve 

transformation 
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 The unconstrained optimization cost function is

 Where the optimization variables are parameters 
that define the rotation and translation
 Euler angles, quaternions etc.
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 Most expensive part to compute is nearest 
neighbour
 Brute force  is O(n2) 

 Must be repeated each optimization iteration

 KD-tree is most widely used improvement
 K-dimensional tree
 Construction time: O(knlog(n))
 Space: O(n)
 Search time: O(log(n)) 
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 2D-Tree construction
 Median slicing

 Select axis, find median, divide points around median
 Repeat for each subsection
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 3D-Tree
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 Can also perform insertion
 Not needed for ICP

 Nearest neighbour lookup
 Given a point p

 Start at root node, proceed left or right down tree, selecting 
the side that contains the point

 Once a point is found (leaf of the tree), set as the current 
best (upper bound on closest distance)

 Backtrack and check other branches that are not eliminated 
by branch and bound until nearest neighbour is guaranteed
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 Matlab Example
 Uses ICP code from Jakob Wilm and Martin Kjer, 

Technical University of Denmark, 2012
 Working on an interesting map
 Robot drives in a big circle, quantum tunnels through 

obstacles
 Scan registration shown relative to true robot pose at 

t-1.
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 Scan registration
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 Resulting Map with scan matching only
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 Resulting Map with motion model only
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 Updated 2D code for 2014
 Based on code from Ajmal Saeed Mian at CMU in 

2005
 Simpler, easier to modify
 Uses singular value decomposition to identify 

transformation steps
 More detailed map, more scan points, more accurate 

registrations

 Accurate enough to simply accumulate registrations
 Slowly growing error, with bias

 Added easy collision avoidance
 Turn right if something is directly in front of robot

ITERATIVE CLOSEST POINT ALGORITHM
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 Updated 2D ICP code for 2014


