

SECTION 8 – MAPPING II

Prof. Steven Waslander

COMPONENTS

OUTLINE

- Localization
 - EKF
 - Particle
- Mapping
 - Occupancy Grid based
- Simultaneous Localization and Mapping
 - EKF SLAM
 - Particle based FastSLAM
 - Occupancy Grid SLAM
 - Iterated Closest Point Scan Matching
 - Pose Graph Optimization

SIMULTANEOUS LOCALIZATION AND MAPPING

- Given
 - Motion model
 - Measurement model
 - Uniquely identifiable static features
 - \circ Vehicle inputs, u_t
 - Measurements to some features, y_t
- Find
 - Vehicle state, x_t^r
 - Feature locations, m^i
- Relative calculation, coordinate system determined upon initialization
- Significantly larger estimation problem than straight localization

SLAM Types

- Online SLAM
 - Estimates the current state and the map given all information to date

$$p(x_t^r, m | y_{1:t}, u_{1:t})$$

- Most useful for a moving vehicle that needs to estimate its state relative to its environment in real time
- Usually run online

Full SLAM

• Estimates the entire state history and the map given all information

$$p(x_{1:t}^r, m \mid y_{1:t}, u_{1:t})$$

- Most useful for creating maps from sensor data after the fact
- Usually run in batch mode

- The four main SLAM Algorithms in Thrun
 - EKF/UKF SLAM (Thrun et al. Chap 10)
 - Extension of EKF localization to online SLAM problem
 - Very commonly used, especially for improving vehicle state estimation when static features are available

- GraphSLAM (Thrun et al. Chap 11)
 - Solves the full SLAM problem by storing data as a set of constraints between variables
 - Can create maps based on 1000s of features, not possible with EKF due to matrix inversion limitations
 - Many variations, all boil down to a nonlinear optimization that needs to be fast to be useful

- The four main SLAM Algorithms in Thrun
 - Sparse Extended Information Filter SLAM (Thrun et al. Chap 12)
 - Approximate application of Extended Information Filter to SLAM problem
 - Can create a sparse (nearly diagonal) information matrix, which also enables tracking many features, constant time updates
 - FastSLAM (Thrun et al. Chap 13)
 - Solves the online SLAM problem simultaneously by combining particles and EKFs
 - Rao-Blackwellized particle filters
 - Can track multiple correspondences with different particles
 - Shows robustness to incorrect correspondence
 - Most active area of research, large scale mapping

- Our focus is the online SLAM problem
 - EKF SLAM
 - Quick SLAM solution, great for improving vehicle state estimation from information about the environment
 - Not too robust to incorrect feature correspondence
 - Be sure to pick features wisely
 - FastSLAM
 - A more robust approach, particularly with respect to feature correspondence
 - Computationally more expensive, especially with higher dimension vehicle state
 - Occupancy Grid SLAM
 - FastSLAM with mapping by each pixel
- But, I'll introduce GraphSLAM too
 - Predominant area of research over the last decade
 - Super-impressive results

- A brittle problem, regardless of algorithm
 - Attempting to estimate nT + fM states using MT, 2MT, 3MT measurements, depending on sensor
 - T is the number of time steps
 - M is the number of features
 - on is the number of vehicle state variables
 - of is the number of map feature variables
 - Direct sensing of vehicle states can significantly improve estimation
 - GPS, odometry information very effective at reducing uncertainty
 - Use what you can

- Variables
 - Full state
 - Vehicle states
 - Feature locations
 - Signatures
 - Not included here

$$x_{t} = \begin{bmatrix} x_{t}^{r} \\ m_{x}^{1} \\ m_{y}^{1} \\ \vdots \\ m_{x}^{M} \\ m_{y}^{M} \end{bmatrix}$$

- Belief: Full state mean and covariance
 - Components for vehicle state and map state

$$\mu_t = \begin{bmatrix} \mu_t^r \\ \mu_t^m \end{bmatrix}$$
 Robot
$$\sum_t = \begin{bmatrix} \sum_t^{rr} & \sum_t^{rm} \\ \sum_t^{mr} & \sum_t^{mm} \end{bmatrix}$$

• Once again, investigate with a specific vehicle and measurement model

$$\begin{bmatrix} x_1^r \\ x_2^r \\ x_3^r \end{bmatrix} = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} \qquad \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} v \\ \omega \end{bmatrix}$$

- Motion model for robot only
 - Feature are static, no motion

$$\begin{bmatrix} x_{1,t}^r \\ x_{2,t}^r \\ x_{3,t}^r \end{bmatrix} = g(x_{t-1}^r, u_t, \varepsilon_t) = \begin{bmatrix} x_{1,t-1}^r + u_{1,t} \cos x_{3,t-1}^r dt \\ x_{2,t-1}^r + u_{1,t} \sin x_{3,t-1}^r dt \\ x_{3,t-1}^r + u_{2,t} dt \end{bmatrix} + \varepsilon_t$$

$$\varepsilon_t \sim N(0, R_t)$$

11

- Measurement Model
 - Relative range and/or bearing to numerous features m^i in field of view
 - Define $\delta x_t^i = m_x^i x_{1,t}$ $\delta y_t^i = m_y^i x_{2,t}$

$$r_t^i = \sqrt{\left(\delta x_t^i\right)^2 + \left(\delta y_t^i\right)^2}$$

Then

$$\begin{bmatrix} y_{1,t}^{i} \\ y_{2,t}^{i} \end{bmatrix} = h^{i}(x_{t}, \delta_{t}) = \begin{bmatrix} \varphi_{t}^{i} \\ r_{t}^{i} \end{bmatrix} = \begin{bmatrix} \tan^{-1}\left(\frac{\delta y_{t}^{i}}{\delta x_{t}^{i}}\right) - x_{3,t}^{r} \\ \sqrt{\left(\delta x_{t}^{i}\right)^{2} + \left(\delta y_{t}^{i}\right)^{2}} \end{bmatrix} + \delta_{t}$$
Range

Noise

$$\delta_{\scriptscriptstyle t} \sim N(0,Q_{\scriptscriptstyle t})$$

- Vehicle Prior
 - In localization or mapping, coordinate system was clearly defined
 - Localization relative to fixed map
 - Mapping relative to known vehicle motion
 - In pure SLAM, neither is known, so coordinate system is arbitrary choice
 - Assume vehicle starts at origin with zero heading
 - Know this with absolute certainty

$$x_0^r = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T \qquad \qquad \sum_{0}^{rr} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- Map Prior
 - No clue where any of the features are
 - Theoretically, we could say

$$x_0^m = \begin{bmatrix} 0 & 0 & \dots & 0 & 0 \end{bmatrix}^T \qquad \qquad \sum_{0}^{mm} = \begin{bmatrix} \infty & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \infty \end{bmatrix}$$

- In practice, not very useful
 - Linearization with all features assumed to be at the origin performs very poorly
 - Inversion with infinite diagonal numerically difficult

- Map Prior
 - Preferred method
 - Initialize each feature location based on first set of measurements
 - Measurements must uniquely define feature position
 - Bearing and range + vehicle state required

$$\mu_{t}^{i} = \begin{bmatrix} x_{1,t}^{r} + y_{2,t}^{i} \cos(y_{1,t}^{i} + x_{3,t}^{r}) \\ x_{2,t}^{r} + y_{2,t}^{i} \sin(y_{1,t}^{i} + x_{3,t}^{r}) \end{bmatrix}$$

- Can define covariance based on measurement noise and vehicle state uncertainty, or predefine explicitly
- If initial measurements are insufficient, can accumulate multiple measurements before initialization
 - Bearing only SLAM (for vision data)

• A sketch

• A vehicle and a set of features, perfect knowledge of vehicle location initially

- The vehicle measures the location of two features and moves one time step forward
 - Measurement and motion uncertainty

- A sketch
 - At the next time step, two new features are observed with more uncertainty
 - Combination of vehicle and measurement uncertainty
 - Motion uncertainty continues to grow

- A sketch
 - The next set of measurements includes a feature that has already been observed
 - The vehicle uncertainty can be reduced
 - The additional features are not as uncertain

• The result: as old features are discarded and new features added, uncertainty grows

- EKF SLAM Algorithm
 - Prediction step
 - Only vehicle states and covariance change
 - Map states and covariance are unaffected
 - o Quick 3X3 update

$$G_{t} = \frac{\partial}{\partial x_{t-1}^{r}} g(x_{t-1}^{r}, u_{t}) \Big|_{x_{t-1}^{r} = \mu_{t-1}^{r}}$$

$$\overline{\mu}_{t}^{r} = g(\mu_{t-1}^{r}, u_{t})$$

$$\overline{\Sigma}_{t}^{rr} = G_{t} \Sigma_{t-1}^{rr} G_{t}^{T} + R_{t}$$

Linearization of Motion Model, as before

$$\begin{bmatrix} x_{1,t}^r \\ x_{2,t}^r \\ x_{3,t}^r \end{bmatrix} = g(x_{t-1}^r, u_t) = \begin{bmatrix} x_{1,t-1}^r + u_{1,t} \cos x_{3,t-1}^r dt \\ x_{2,t-1}^r + u_{1,t} \sin x_{3,t-1}^r dt \\ x_{3,t-1}^r + u_{2,t} dt \end{bmatrix}$$

$$G_{t} = \frac{\partial}{\partial x_{t-1}^{r}} g(x_{t-1}^{r}, u_{t}) = \begin{bmatrix} 1 & 0 & -u_{1,t} \sin x_{3,t-1}^{r} dt \\ 0 & 1 & u_{1,t} \cos x_{3,t-1}^{r} dt \\ 0 & 0 & 1 \end{bmatrix}$$

- EKF SLAM Algorithm
 - Measurement Update, for feature i
 - Since each measurement pair depends on one feature, independence means updates can be performed one feature at a time

$$H_{t}^{i} = \frac{\partial}{\partial x_{t}} h^{i}(x_{t}) \bigg|_{x_{t} = \overline{\mu}_{t}}$$

$$K_{t}^{i} = \overline{\Sigma}_{t} \left(H_{t}^{i} \right)^{T} \left(H_{t}^{i} \overline{\Sigma}_{t} \left(H_{t}^{i} \right)^{T} + Q_{t} \right)^{-1}$$

$$\mu_{t} = \overline{\mu}_{t} + K_{t}^{i} (y_{t} - h(\overline{\mu}_{t}))$$

$$\Sigma_{t} = (I - K_{t} H_{t}^{i}) \overline{\Sigma}_{t}$$

Linearization of Measurement Model

$$\begin{bmatrix} y_{1,t}^{i} \\ y_{2,t}^{i} \end{bmatrix} = h^{i}(x_{t}) = \begin{bmatrix} \tan^{-1}\left(\frac{dy_{t}^{i}}{dx_{t}^{i}}\right) - x_{3,t}^{r} \\ \sqrt{\left(dx_{t}^{i}\right)^{2} + \left(dy_{t}^{i}\right)^{2}} \end{bmatrix}$$

$$H_{t}^{i} = \frac{\partial}{\partial x_{t}} h^{i}(x_{t}) = \begin{bmatrix} \frac{dy_{t}^{i}}{r^{2}} & \frac{-dx_{t}^{i}}{r^{2}} & -1 & 0 & \cdots & 0 & \frac{-dy_{t}^{i}}{r^{2}} & \frac{dx_{t}^{i}}{r^{2}} & 0 & \cdots & 0 \\ \frac{-dx_{t}^{i}}{r} & \frac{-dy_{t}^{i}}{r} & 0 & 0 & \cdots & 0 & \frac{dx_{t}^{i}}{r} & \frac{dy_{t}^{i}}{r} & 0 & \cdots & 0 \end{bmatrix}$$

 \circ Derivatives w.r.t. m^i in appropriate columns

- Example
 - 22 features in two lines
 - Same circular motion as for localization example
 - Field of view similar to camera
 - +/- 45 degrees
 - 5 m range

Example

Discussion

- Vehicle state error correlates feature estimates
 - If vehicle state known exactly (mapping) features could be estimated independently
 - Knowing more about one feature improves estimates about entire map
- Covariance matrix divided in 3X3 structure
 - Vehicle state and two sets of features
 - Each row of features strongly connected
 - Rows weakly connected by uncertain multiple time step motion
- Growth in state uncertainty without loop closure
 - When first feature is re-observed, all estimates improve
 - Correction information carried in covariance matrix

- Wrong correspondence can be catastrophic
 - Linearization about wrong point can cause deterioration of estimate, divergence of covariance

Strategies

- Provisional Feature list
 - Features on the list are tracked identically to other features
 - Not used to update vehicle state or vehicle/map covariance
 - Once trace of covariance drops below threshold, incorporate feature into map
- Feature selection
 - Features are selected so as to avoid correspondence issues
 - Spatially distributed
 - Distinct signatures
- Feature Tracking and windowed correspondence
 - Features can be expected to move in a consistent way from frame to frame, so only a subset of features need be considered for matches

OUTLINE

- Localization
 - EKF
 - Particle
- Mapping
 - Occupancy Grid based
- Simultaneous Localization and Mapping
 - EKF SLAM
 - Particle based FastSLAM
 - Occupancy Grid SLAM
 - Iterated Closest Point Scan Matching
 - Pose Graph Optimization

- Divergence Issue with EKF primarily due to linearization about incorrect estimate
 - Fails when linearization is a poor approximation
 - Features at close range accentuate issue

• Particle filters avoid this linearization

• Recall Particle Filter Algorithm

- 1. For each particle in S_{t-1}
 - Propagate sample forward using motion model (sampling)

$$\overline{x}_t^{r[i]} \sim p(x_t^r \mid x_{t-1}^{r[i]}, u_t)$$

2. Calculate weight

(importance)

$$w_t^{[i]} = p(y_t \mid \overline{x}_t^{r[i]})$$

3. Store in interim particle set

$$S'_{t} = S'_{t} + \{s_{t}^{[i]}\}$$

- 2. Normalize weights
- 3. For j = 1 to I
 - 1. Draw index i with probability $\propto w_t^{[i]}$ (resampling)
 - 1. Add to final particle set

$$S_t = S_t + \{S_t^{[i]}\}$$

- Direct Particle Filter approach
 - Applied to example SLAM problem, state is too large to capture distributions with particles
 - Exponential growth in number of particles needed per dimension of the problem
 - SLAM problem has significant structure
 - Map features do not move
 - Measurements depend on only the vehicle state and one feature
 - Need a way to avoid issues of EKF and particle filters

- Rao-Blackwellized Particle Filter
 - The vehicle state will be estimated with particles
 - Each feature will be estimated with an independent EKF
 - Each particle has the vehicle state and a bank of EKFs, one for each feature in the map

Particle	Robot State	Features		
1	$x_{t,1}^r$	$\mu^1_{t,1}, \Sigma^1_{t,1}$	• • •	$\mu_{t,1}^{\scriptscriptstyle M}, \sum_{t,1}^{\scriptscriptstyle M}$
2	$x_{t,2}^r$	$\mu^1_{t,2}, \Sigma^1_{t,2}$		$\mu_{t,2}^{\scriptscriptstyle M}, \sum_{t,2}^{\scriptscriptstyle M}$
:	:	:	•	•
I	$oldsymbol{x}_{t,I}^{r}$	$\mu^1_{t,I}, \Sigma^1_{t,I}$	• • •	$\mu_{t,I}^{\scriptscriptstyle M}, \sum_{t,I}^{\scriptscriptstyle M}$

- Key Insight
 - If vehicle state is known exactly, feature locations can be estimated independently
 - In a particle filter, each particle represents an exact belief about the state
 - Representing vehicle state belief with particles allows independent estimation of features for each particle
 - M+1 separate independent beliefs

$$p(x_{1:t} \mid y_{1:t}, u_{1:t}) = p(x_{1:t}^r \mid y_{1:t}, u_{1:t}) \prod_{i=1}^M p(m^i \mid y_{1:t}, u_{1:t})$$

• Hidden Markov Model

- Feature Correspondence
 - Can also be incorporated, each particle need not use the same correspondence decisions
 - Avoids issue with EKF
 - Larger estimation problem, more particles needed

FASTSLAM – PREDICTION STEP

FASTSLAM – MEASUREMENT UPDATE

FASTSLAM – SENSOR UPDATE

- Prediction Step
 - Like Particle filter localization, propagate each particle through motion model with disturbance sample

$$x_{t,j}^r \sim p(x_t^r | x_{t-1,j}^r, u_t)$$

• O(I), linear in the number of particles

- Measurement Update
 - For each particle
 - Initialize EKF for each newly observed feature

$$\mu_{t,j}^{i} = h^{i^{-1}} \left(y_{t}, x_{t,j}^{r} \right)$$

$$H_{t,j}^{i} = \frac{\partial}{\partial m^{i}} h^{i} (x_{t}) \Big|_{x_{t} = [x_{t,j}^{r} \mu_{t-1,j}^{i}]}$$

$$\Sigma_{t,j}^{i} = H_{t,j}^{i^{-1}} Q_{t} \left(H_{t,j}^{i^{-1}} \right)^{T}$$

$$w_{j} = p_{0}$$

- Measurement Update
 - For each particle
 - Update individual EKF for each previously observed feature

$$\begin{aligned} H_{t,j}^{i} &= \frac{\partial}{\partial m^{i}} h^{i}(x_{t}) \bigg|_{x_{t} = [x_{t,j}^{r} \ \mu_{t-1,j}^{i}]} \\ K_{t,j}^{i} &= \sum_{t-1,j}^{i} \left(H_{t,j}^{i} \right)^{T} \left(H_{t,j}^{i} \sum_{t-1,j}^{i} \left(H_{t,j}^{i} \right)^{T} + Q_{t}^{i} \right)^{-1} \\ \mu_{t,j}^{i} &= \mu_{t-1,j}^{i} + K_{t,j}^{i} (y_{t}^{i} - h(\mu_{t-1,j}^{i})) \\ \sum_{t,j}^{i} &= (I - K_{t,j}^{i} H_{t,j}^{i}) \sum_{t-1,j}^{i} \end{aligned}$$

- Measurement Update
 - Importance sampling
 - Particle Weights are probability of measurement given particle state

$$w_j = p(y_t \mid x_{t,j})$$

• Found by linearizing about particle state

$$p(y_t \mid x_{t,j}) = \eta \mid 2\pi Q_{t,j} \mid^{-1/2} e^{\left(-\frac{1}{2}(y_t - h(\mu_{t,j}))^T Q_{t,j}(y_t - h(\mu_{t,j}))\right)}$$

$$Q_{t,j} = H_{t,j} \Sigma_{t,j}^i H_{t,j}^T + Q_t^i$$

- Resampling as before
 - \circ Draw I samples from existing particles based on measurement model weights

- Example
 - Two wheeled robot motion, going in a circle
 - Range and bearing measurements to features in view
 5 m range, 50 deg FOV
 - 100 particles, all means displayed

• Example

- Victoria Park
 - 4 km traverse
 - o < 5 m RMS
 position error
 </p>
 - 100 particles

Blue = GPS Yellow = FastSLAM

Dataset courtesy of University of Sydney Results courtesy of Thrun et al.

- Results from Victoria Park data set
 - Raw odometry vs FastSLAM with GPS ground truth

(b) FastSLAM 1.0 (solid), GPS path (dashed)

- Results from Victoria Park data set
 - FastSLAM with GPS ground truth on satellite image
 - Ignoring odometry data, still successful

(c) Paths and map with aerial image

(d) Estimated path without odometry

- FastSLAM 2.0
 - Improves motion update sampling to include measurement information
 - Useful when motion is relatively uncertain compared to measurements
 - Results in a better proposal distribution, which means less likely to encounter particle deprivation
 - Target distribution is closer to proposal
 - More particles present good estimates of the true state
 - More particles are weighted highly meaning more make it through resampling
 - Allows us to improve accuracy of estimation and/or reduce the number of particles needed
 - Useful for occupancy grid SLAM

OUTLINE

- Localization
 - EKF
 - Particle
- Mapping
 - Occupancy Grid based
- Simultaneous Localization and Mapping
 - EKF SLAM
 - Particle based FastSLAM
 - Occupancy Grid SLAM
 - Iterated Closest Point Scan Matching
 - Pose Graph Optimization

- Example
 - Bruceton Research Mine
 - Results courtesy of Dirk Haehnel
 - Laser data collected while driving through underground mine

- Occupancy grid based FastSLAM
 - Starting from the same belief representation as the FastSLAM algorithm
 - Instead of treating each feature individually, we think of the map as an occupancy grid problem

$$p(x_{1:t}^r, m \mid y_{1:t}, u_{1:t}) = p(x_{1:t}^r \mid y_{1:t}, u_{1:t}) p(m \mid x_{1:t}^r, y_{1:t})$$

Particle filter prediction and measurement update

$$w_t^{[i]} = \eta \frac{bel(x_t)}{\overline{bel}(x_t)}$$

Occupancy grid mapping

$$l_{t,i} = \text{logit}(p(m^i \mid y_t)) + l_{t-1,i} - l_{0,i}$$

- Occupancy grid based FastSLAM: gmapping!
 - Creates complete map of the environment within each particle
 - Each cell becomes a feature with a probability of being occupied
 - Motion predictions can be improved by employing scan registration techniques
 - Weights are determined using measurement model, resampling as before
 - Occupancy probabilities are updated through inverse measurement model

- Occupancy grid based FastSLAM
 - Three new elements

- Improved prediction step using scan registration
 - Disturbance distribution is dependent on scan and map

- Prediction step using scan registration
 - The idea is to include the current measurement information when updating particle location, but before incorporating it in the map
 - Apply measurement to robot pose only, save map update for later
 - Measurement model far more precise than motion model

- Prediction step using scan registration
- Use scan registration to define transformation
 - Iterative Closest Point: Given two laser scans, optimize the transformation between them by corresponding the closest points and minimizing the mean squared error.
 - Variants/Improvements
 - Generalized Iterative Closest Point: match normals
 - Normal Distribution Transform : convert to grid of Gaussians
 - Feature correspondence: only match feature points

o Scan Registration Example − ICP matlab code

• Scan Registration Example – ICP on laser data

- Prediction step using scan registration
 - Result of scan registration

$$T_t^* = \left\{ R_t^*, t_t^* \right\}$$

- Rotation and translation needed to match new scan to previous scan or current map.
- Provides a transformation to apply to particle robot state

$$x_t^{r[i]} = R_t^* x_{t-1}^{r[i]} + t_t^*$$

• Must also derive disturbance distribution from which to sample a disturbance to apply to each particle

- Prediction step using scan registration
 - In order to combine measurement model and motion model, need to evaluate both over region around scan registration estimate
 - Applying the Markov assumption

$$p(x_t^r \mid x_{1:t-1}^{r[i]}, m^{[i]}, u_{1:t}, y_{1:t}) = p(x_t^r \mid x_{1:t-1}^{r[i]}, m^{[i]}, u_t, y_t)$$

And Bayes Theorem + Markov

- Prediction step using scan registration
 - Create samples around scan point, and propagate through motion and measurement models using Gaussian approximation

$$\mu^{[i]} = \frac{1}{\eta} \sum_{j=1}^{L} x_j p(y_t \mid x_t^r, m^{[i]}) p(x_t^r \mid x_{1:t-1}^{r[i]}, u_t)$$

$$\Sigma^{[i]} = \frac{1}{\eta} \sum_{j=1}^{L} (x_j - \mu_j) (x_j - \mu_j)^T p(y_t \mid x_t^r, m^{[i]}) p(x_t^r \mid x_{1:t-1}^{r[i]}, u_t)$$

- Prediction step using scan registration
 - Measurement model
 - Given scan registration result, compute for each particle

$$p(y_t \mid x_t^{r[i]}, m^{[i]})$$

- Done by multiplying probabilities in each cell traversed by scan
 - Let y_t^{jk} be the measurement {occupied or not occupied} for each cell j along the ray defined by a measurement k

$$p(y_t^{jk} = 1 | m_j) = p(m_j)$$
$$p(y_t^{jk} = 0 | m_j) = 1 - p(m_j)$$

• Then the likelihood of a measurement given the map is

$$p(y_t \mid x_t^{r[i]}, m^{[i]}) = \prod_{k=1}^K \prod_{j=1}^J p(y_t^{jk} \mid m_j^{[i]})$$

- Weighting
 - Importance sampling
 - Particle Weights can also be computed quickly through the following update equation

$$w_{t,j} = \sum_{k=1}^{K} p(y_t \mid x_{t,j}^r, m_{t-1,j}) p(x_{t,j}^r \mid x_{t-1,j}^r, u_t) w_{t-1,j}$$

Derived from definitions of

$$w_{t}^{[i]} = \eta \frac{bel(x_{t})}{\overline{bel}(x_{t})} = \frac{p(x_{t}^{r} \mid x_{1:t-1}^{r[i]}, m^{[i]}, u_{t}, y_{t})}{\pi(x_{t}^{r} \mid x_{1:t-1}^{r[i]}, m^{[i]}, u_{t}, y_{t})}$$

• Where π is the improved proposal distribution discussed above

• Resampling

- Most dangerous step of Particle filter update
 - Can lose good particles, lead to deprivation
- Only perform resampling updates when necessary
 - Adaptive resampling based on threshold

$$N_{eff} = \frac{1}{\sum_{i=1}^{I} (w_t^{[i]})^2} < \frac{I}{2}$$

- Reaches a maximum when all particles are equally weighted
- Becomes smaller as some particles are more heavily weighted than others

Map Update

 Since each particle has a known position, standard mapping update applies

$$l_{t,i} = \text{logit}(p(m^i \mid y_t)) + l_{t-1,i} - l_{0,i}$$

- The log odd ratio at t is the sum of the ratio at t-1 + the inverse measurement ratio the initial belief
- Once again relies on inverse measurement model

$$p(m^i \mid y_t, x_t^{r[i]})$$

 Can be delayed to after resampling to reduce number of updates required

- Example Results for gmapping
 - Intel Research Lab
 - o 28 m X 28 m, 2D SICK Lidar
 - Only 15 particles needed for maximum accuracy
 - Can be run in real time
 - MIT Kilian Court
 - The infinite corridor, 250m X 215m
 - 60-80 particles used
 - Nested loops

• Intel Results – Map using only integrated wheel odometry (Dirk Haehnel)

• Results of Occupancy Grid SLAM with standard motion model

• Results of Occupancy Grid SLAM with improved proposal distribution (motion and measurement)

• Results of Occupancy Grid SLAM with improved proposal distribution

∘ MIT Results – 80 particles

OUTLINE

- Localization
 - EKF
 - Particle
- Mapping
 - Occupancy Grid based
- Simultaneous Localization and Mapping
 - EKF SLAM
 - Particle based FastSLAM
 - Occupancy Grid SLAM
 - Iterated Closest Point Scan Matching
 - Pose Graph Optimization

SCAN REGISTRATION

• Widely used for 3D modeling, robotics, map alignment, image stitching

Matt Chiang, Jay Busch @ USC Graphics Lab

SCAN REGISTRATION

• Widely used for 3D modeling, robotics, map alignment, image stitching

Matt Chiang, Jay Busch @ USC Graphics Lab

- Let M be a model (reference) point set.
- Let S be a scene (target) point set.

- We assume for now that:
 - $N_M = N_S$.
 - Each point S_i correspond to a point in M_i .

• The transformation between the two scans is represented as a rotation and a translation

$$T_s^m = \left\{ R_s^m, t_s^m \right\} \qquad m_i = R_s^m s_i + t_s^m$$

• If correct correspondences are known, can find relative rotation/translation that minimizes error

- Given two scans and an initial transformation:
 - Transform scene point set into model frame
 - Find nearest neighbour correspondences
 - Sum quadratic distance error between points
 - Calculate descent direction and improve transformation

• The unconstrained optimization cost function is

min
$$f(R,T) = \frac{1}{N_S} \sum_{i=1}^{N_S} ||m_i - R(s_i) - t||^2$$

min $f(q) = \frac{1}{N_S} \sum_{i=1}^{N_S} ||m_i - R(q_R)s_i - q_T||^2$

- Where the optimization variables are parameters that define the rotation and translation
 - Euler angles, quaternions etc.

$$q = \begin{bmatrix} q^r & q^t \end{bmatrix} \in \mathbb{R}^6$$

- Most expensive part to compute is nearest neighbour
 - Brute force is $O(n^2)$
 - Must be repeated each optimization iteration
 - KD-tree is most widely used improvement
 - K-dimensional tree
 - Construction time: $O(kn\log(n))$
 - Space: O(n)
 - Search time: $O(\log(n))$

- 2D-Tree construction
 - Median slicing
 - Select axis, find median, divide points around median
 - Repeat for each subsection

• 3D-Tree

- Can also perform insertion
 - Not needed for ICP
- Nearest neighbour lookup
 - Given a point p
 - Start at root node, proceed left or right down tree, selecting the side that contains the point
 - Once a point is found (leaf of the tree), set as the current best (upper bound on closest distance)
 - Backtrack and check other branches that are not eliminated by branch and bound until nearest neighbour is guaranteed

Matlab Example

- Uses ICP code from Jakob Wilm and Martin Kjer, Technical University of Denmark, 2012
- Working on an interesting map
- Robot drives in a big circle, quantum tunnels through obstacles
- Scan registration shown relative to true robot pose at t-1.

Scan registration

• Resulting Map with scan matching only

• Resulting Map with motion model only

- Updated 2D code for 2014
 - Based on code from Ajmal Saeed Mian at CMU in 2005
 - Simpler, easier to modify
 - Uses singular value decomposition to identify transformation steps
 - More detailed map, more scan points, more accurate registrations
 - Accurate enough to simply accumulate registrations
 - Slowly growing error, with bias
 - Added easy collision avoidance
 - Turn right if something is directly in front of robot

• Updated 2D ICP code for 2014

87