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 Localization – Determining position relative to known 
environment
 EKF
 Particle

 Mapping – Determining environment relative to 
known position
 Feature based (not covered)
 Occupancy grid based

 Simultaneous Localization and Mapping – unknown 
position and environment
 EKF SLAM
 Particle based FastSLAM
 Occupancy Grid SLAM
 Iterated Closest Point Scan Matching
 Pose Graph Optimization 3
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 Map Types
 Location based

 Map is defined by 
occupancy of each 
location

 Can be probabilistic in 
formulation

 Scales poorly 
 Works well in two 

dimensions (planar 
position)
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 Map Types
 Feature Based

 A feature is defined at a 
specific location, and may 
have a signature

 The set of all features 
defines the map

 Effective for localization

 Scales well to larger 
dimensions 

 Hard to use for collision 
avoidance 5
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 Localization
 Using sensor information to locate the vehicle in a 

known environment

 Given:
 Control inputs and motion model
 Sensor measurements and measurement model relative to 

environment
 Environment model

 Find:
 Vehicle position
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 Localization Problems

 Initial conditions
 Local: Known initial position

 Tracking position through motions with inputs and 
measurements

 Global: Unknown initial position
 Finding position and then continuing to track

 Kidnapped: Incorrect initial position
 Correcting incorrect prior beliefs to recover true position 

and motion
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 Assumptions
 Known static environment

 No moving obstacles, or other vehicles that cannot be 
removed from sensor measurements

 Passive Estimation
 Control law does not seek to minimize estimation error

 Single vehicle
 Only one measurement location is available

 Each assumption can be addressed through more 
complex algorithms 
 Good starting points available in Thrun et al.
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 Feature-based localization
 Most natural formulation of localization problem

 Sensors measure bearing, range, relative position of 
features

 Location based maps can be reduced to a set of measurable 
features

 The more features tracked the better the solution
 But the larger the matrix inverse at each timestep
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 Example: Two-wheeled robot
 Vehicle State, Inputs:

 Motion Model
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 Example: Feature Map

 Assume all features are uniquely identifiable
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 Example: Measurement Model
 Relative range and/or bearing to closest feature mi, 

regardless of heading
 Assume measurement of closest feature only
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 We’ll try localization with two approaches

 EKF (UKF) based localization
 Fast computationally
 Intuitive formulation
 Most frequently implemented
 Possibility for divergence if nonlinearities are severe
 Additive Gaussian noise

 Particle filter based localization
 Slightly cooler visualizations
 More expensive computationally
 More capable of handling extreme nonlinearities, 

constraints, discontinuities 13
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 Recall Extended Kalman Filter Algorithm
1. Prediction Update

2. Measurement Update
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 Linearization of Motion Model
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 Linearization of Measurement Model

 where
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 Five features in a 2D world
 No confusion over which is which

 Correct correspondence
 Two wheeled robot (x,y,θ)
 Measurement to feature of Range, bearing, both
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 Example
 Both measurements, very low noise, correct prior
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 Example with moderate noise
 Both measurements noisy, correct prior, large disturbances
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 Example with moderate noise
 Range only, correct prior

20

LOCALIZATION

True state            -o-
Belief                    -x-
Predicted Belief   -o-
Measurement     ___
Features               O
Current Feature  X



 Example with moderate noise
 Bearing only, correct prior
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 Example with moderate noise
 Bearing only, incorrect prior of [2 -1 pi/4]
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 Particle Filter implementation

 All the components are defined above
 Same prior
 Same motion model
 Same measurement model
 Standard particle filter implementation
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 Recall the Particle Filter Algorithm (simplified)
1. For each particle in 

1. Propagate sample forward using motion model (sampling) 

2. Calculate weight                                                (importance)

3. Store in interim particle set

2. For j = 1 to D
1. Draw index i with probability                           (resampling)

1. Add to final particle set
24
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 Particle Filter results
 Range & bearing measurements with 500 particles
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 Particle Filter results
 Range only with 500 particles
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 Particle Filter results
 Range & bearing with 100 particles, poor prior 
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 Particle Filter results
 Range & bearing with 100 particles, poor prior, large 

disturbance
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 Feature Based Localization
 Unknown Correspondences

 It may not be obvious from measurements which feature 
has been measured

 A major issue with all real world implementations
 Popularity of SIFT/SURF features arises from 

uniqueness of signature
 Corners, edges, color blobs etc. not easy to distinguish
 Maximum Likelihood correspondence
 Augmented with geometric configuration of matches
 Random Sample Consensus
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 Unknown Correspondence
 Maximum Likelihood Correspondence

 Find the most likely feature a measurement corresponds to 
based on state and measurement info

 Works poorly if many features are equally likely
 Integer optimization 

 Exponential complexity growth in the number of 
variables

 Often avoided by doing correspondence for each 
measurement independently

 Suboptimal, could get multiple distinct measurements 
assigned to the same feature 30
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 Random Sample Consensus (RANSAC)
 While not out of time

 Pick a small subset of measurement correspondences

 Perform temporary measurement update with this subset

 Find all features that agree with current estimate to within 
a fixed threshold (identify inlier set)

 Select largest inlier set, reject all outliers

 Recompute solution using the inlier set
31
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 Nonlinear least squares using bearing measurements 
in 2D
 Known map of features
 A subset fall in the field of view of the robot (50 m, 60 ○)
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 Nonlinear least squares using bearing measurements 
in 2D
 Measurements to features are bearings
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 Nonlinear least squares using bearing measurements 
in 2D
 Given an initial estimate of the pose of the robot and a 

measurement model,

 Solve nonlinear least squares problem (NLLS)

 Analogous to EKF, without motion update
 At each step, find linear least squares solution, then relinearize

and repeat until convergence
34
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 Nonlinear least squares using bearing measurements 
in 2D
 Prior x0 = [ 10 20 90]
 Solution with 20 measurements, usually works.
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 Nonlinear least squares using bearing measurements 
in 2D
 Add a certain percentage of outliers to the mix (e.g. 20%)

 Measurements to the incorrect map feature
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 Nonlinear least squares using bearing measurements 
in 2D
 Apply RANSAC to remove outliers and still get a good 

estimate (e.g. 100 iterations)
 Pick small feature set (5 features) and solve NLLS
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 Nonlinear least squares using bearing measurements 
in 2D
 Apply RANSAC to remove outliers and still get a good 

estimate (e.g. 100 iterations)
 Pick small feature set (5 features) and solve NLLS
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 Nonlinear least squares using bearing measurements 
in 2D

 Find inlier set of all measurements that agree with current seed 
solution
 Threshold on measurement error
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 Nonlinear least squares using bearing measurements 
in 2D

 Repeat many times and save biggest inlier set
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 Nonlinear least squares using bearing measurements 
in 2D

 Final solution looks quite good, and inlier set includes almost all 
measurements taken.

 Not very expensive compared to finding features in the first place.
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 Mapping
 Using sensor information from known vehicle 

locations to define a map of the environment 

 Given:
 Vehicle location model
 Sensor measurements and inverse measurement model

 Find:
 Environment map
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 Occupancy Grid Mapping
 Find probability at time t that each grid cell contains 

an obstacle

 Subscript t moved to emphasize that features are static

 Assumptions
 Static environment
 Independence of cells
 Known vehicle state at each time step
 Sensor model is known
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 Recall Discrete Bayes Filter Algorithm 
1. Prediction update (Discrete Total probability)

1. Measurement update (Bayes Theorem)

 η is a normalizing constant that does not depend on the 
state (will become apparent in derivation)
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 Bayes Filter with static states
 Since the cell contents do not move, the motion model 

is trivial
 The predicted belief is simply the belief from the previous 

time step

 The prediction step is no longer needed, so we update with 
each new measurement regardless of vehicle motion
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 Log Odds Ratio
 Instead of tracking the probability, we track the log 

odds ratio for each cell

 Referred to as logit function (logistic regression) 46
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 Log odds ratio
 The big advantage is in dealing with low (and high) 

probability discrete states
 Avoids issues with truncation in multiplicative combination 

of probabilities

 As we’ll see, the update rule involves addition only

 Can always recover probability with
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 Bayesian log odds update derivation
 For each cell, we have a measurement update (with 

the normalizer defined explicitly)

 We still trust in the Markov assumption
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 Bayesian log odds update derivation
 Let’s apply Bayes rule to the measurement model

 Combining
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 Bayesian log odds update derivation
 The same holds for the opposite event

 Combining to get ratio
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 Bayesian log odds update derivation
 The ratio can now be simplified

 And rewritten as

51

MAPPING

1: 1

1:

1: 11:

( | ) ( | )
( | ) ( )

( | ) ( | )( | )
( )

i i
t t

i i
t

i ii
t tt

i

p m y p m y
p m y p m

p m y p m yp m y
p m






 



1: 1: 1

1: 1: 1

( | ) ( | ) ( ) ( | )
( | ) ( | ) ( ) ( | )

i i i i
t t t

i i i i
t t t

p m y p m y p m p m y
p m y p m y p m p m y








  



 Bayesian log odds update derivation
 It is now possible to form the log odds ratio, 

expanding the negated terms

 Finally, taking the log yields
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 Bayesian log odds update
 A shorthand version of the update rule is

 The log odd ratio at t is the sum of the ratio at t-1 + 
the inverse measurement ratio – the initial belief

 To get the inverse measurement ratio, we need an 
inverse measurement model
 Probability of a state given a certain measurement occurs

 Inverse conditional probability of the measurement models 
used to date 53
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 Example: Laser Scanner
 Returns a range to the closest objects at a set of 

bearings relative to the vehicle heading
 Scanner bearings

 Scanner ranges
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 Example: Laser Scanner
 Inverse measurement model - easy

 In 2D environment, three regions result

 Simple and useful model, many improvements possible
 See Thrun et al. Chap 6 55
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 Example: Laser Scanner
 Inverse measurement model - easy

 Define relative range and bearing to each cell

 Find relevant range measurement for that cell
 Closest bearing of a measurement
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 Example: Laser Scanner
 Inverse measurement model - easy

 Identify each of the three regions and assign correct 
probability of object

 if

 then no info

 else if 

 then high probability of an object

 else if 

 then low probability of an object 57
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maxmin( , ) or | | / 2i s s i s
k kr r r     

max and | | / 2s s i s
k kr r r r   

i s
kr r

Low
Prob

No 
info

High
Prob



 Example: Laser Scanner
 Inverse measurement model - easy

 The parameters α and β define the extent of the region to be 
updated
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 Example
 Simple motion

 Move up until stuck
 Turn right
 Repeat
 Rotate scanner at 

each timestep
 Fixed map
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 Example
 17 Measurements

 46 degree FOV
 30 m max range
 1 set of measurements per 

time step
 Probability of object at 

scan range: 0.6
 Probability of no object in 

front: 0.4
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 Results
 Map results
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 Inverse Measurement model - accurate
 Instead of updating each cell once for a complete scan
 Perform one update per range measurement

 Raytracing using Bresenham’s line algorithm
 Bresenham at IBM  in 1962
 Used to draw lines for a plotter
 Converted ray tracing into integer math update
 Function provided in matlab library, details in 

extra slides
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 Revisiting mapping with Bresenham’s line 
algorithm
 Inverse measurement model
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 Revisiting mapping with Bresenham’s line 
algorithm
 Resulting map
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 Computation Issues
 Grid Size

 Calculation grows as resolution of grid increases
 Topological approximations possible

 Measurement model pre-caching
 Model does depend on state, but does not change, so entire 

model can be pre-calculated

 Sensor subsampling
 Not all measurements need be applied, may be significant 

overlap in scans

 Selective updating
 Only update cells for which significant new information is 

available. (Do not update 3rd region). 65
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 Start with Simple Line Algorithm
 Between 0-45 degrees, x increases faster than y

 For all other ranges performed similarly, by switching x for y
and flipping signs

 Step one column at a time (move incrementally in x)
 Decide if y should be incremented

 Initialization: given (x0, y0, x1, y1)
 Slope = (y1 - y0 ) / (x1-x0)
 error = 0
 y = y0 

 Main loop: for x from x0 to x1 
 plot(x, y) 
 error := error + slope*1
 if error ≥ 0.5 

 y := y + 1 
 error := error - 1.0 67
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 Simple line algorithm works well with a couple of 
exceptions
 Floating point math, slower than necessary
 Rounding error can lead to problems (addition of 

slope*1 at each step)
 Bresenham found a way to solve these problems 

by converting to integer math
 Uses the following line definition
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y mx b 
yy x b
x


 


     x y y x x b    

     ( , ) 0f x y y x x y x b      



 Bresenham’s line algorithm
 Δx, Δy, b are all integers, as are x,y for any pixel 

location
 Start and end pixels define delta Δx, Δy
 Offset b at x = 0 is also in pixels

 Given a line of this form

 Any point (x,y) not on the line has 
 Above the line is positive
 Below the line is negative

69

MAPPING

( , ) 0f x y 

+ve
-ve(0,0)

(1,2)

(2,1)

(2)2 (2)1 0 2  

(2)1 (2)2 0 2   

(2,1)

(1,2)

     ( , ) 0f x y y x x y x b      

(2,2)



 Bresenham’s line algorithm
 Starting at (x0,y0), can now define two possible next 

pixels to add
 (x0+1,y0+1) or (x0+1,y0)
 Should select the one closer to the line 

 arg min (f(x0+1,y0), f((x0+1,y0+1))

 To find out which, look at sign of line equation at 
f(x0+1,y0+1/2)
 If > 0 pick lower
 If < 0 pick upper
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(x0+1,y0)

(x0+1,y0+1)

(x0+1,y0+1/2)



 Bresenham’s line algorithm
 Since we only care about the sign, can equally check 

the following line equation

 And better, we take the following difference

 Since 2f(x0,y0) is on the line, it is equal to 0, so the 
sign of the difference D is all we need.
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     2 ( 0 1, 0 1/ 2) 2 ( 0 1) 2 ( 0 1/ 2) 2 0f x y y x x y x b          

     
     
   

2 ( 0 1, 0 1/ 2) 2 ( 0, 0)
2 ( 0 1) 2 ( 0 1/ 2) 2

2 ( 0) 2 ( 0) 2

2

D f x y f x y
y x x y x b

y x x y x b

y x

   

        

     

   



 Bresenham’s line algorithm
 This decision takes us one step forward along the line
 To do the next step, we consider 2f(x0+2,y0+1/2) for 

this example, or 2f(x0+2,y0+3/2) if the line was 
steeper

 Looking at the differences for those two points 
relative to the current midpoint value gives us an 
iterative update method for the difference value in 
the next column 72

MAPPING

(x0,y0)

(x0+2,y0+1/2)

(x0+1,y0+1/2)
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 Bresenham’s line algorithm
 So we can pick the right piece to add to D, and make 

the next decision
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     
     
 

1/2 2 ( 0 2, 0 1/ 2) 2 ( 0 1, 0 1/ 2)
2 ( 0 2) 2 ( 0 1/ 2) 2

2 ( 0 1) 2 ( 0 1/ 2) 2

2

D f x y f x y
y x x y x b

y x x y x b

y

     

        

       

 

     
     
   

3/2 2 ( 0 2, 0 3 / 2) 2 ( 0 1, 0 1/ 2)
2 ( 0 2) 2 ( 0 3 / 2) 2

2 ( 0 1) 2 ( 0 1/ 2) 2

2 2

D f x y f x y
y x x y x b

y x x y x b

y x

     

        

       

   



 Bresenham’s line algorithm
 function line(x0, y0, x1, y1) 
 dx := abs(x1-x0) 
 dy := abs(y1-y0) 
 Inc1 = 2*dy
 Inc2 = 2*dy-2*dx
 D = 2*dy-dx
 loop 

 plot(x0,y0) 
 if x0 = x1 and y0 = y1 

 return
 x0 =x0+1;
 if D < 0 

 D = D+Inc1 
 Else

 D = D+Inc2
 y0 = y0+1
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