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 Review of Probability
 Bayes Filter Framework
 Kalman Filter
 Extended Kalman Filter
 Unscented Particle Filter
 Particle Filter
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 The Bayes Filter Framework has now been 
adapted to
 Kalman Filter

 Linear models with additive Gaussian noise
 Extended Kalman Filter

 Nonlinear models with additive Gaussian noise

 Both continuous Gaussian methods are 
computationally appealing
 Even for large numbers of state, measurement 

variables
 Benefit arises from ability to maintain Gaussian 

beliefs
 Track only mean and covariance throughout filtering 

process 4
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 In both cases, modeling requirements rule out a 
significant portion of real systems
 Nonlinear systems where linearization is a poor 

approximation over distribution range
 Systems with multiple reasonable hypotheses

 Alternatives include non-parametric filters
 Filters that do not track distribution parameters
 Bayes/Histogram Filter

 Discrete state systems with known probabilities
 Explodes computationally for higher dimensional models 

 Particle Filter
 Maintain a sample set representation of beliefs
 Results can be poor in higher dimensional models
 Also called Sequential Monte Carlo methods 5
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 Modeling assumption
 Instead of assuming Gaussian, tracking μt, ∑t , 

generate a set of sample states from each 
distribution

 Each sample is a hypothesis about the current state

 Properties of the whole collection of samples are used to 
generate estimates

 Not possible to sample belief distribution directly, 
must apply Importance Sampling
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 Example particle sets – density of points defines 
probability

7

PARTICLE FILTER



 Generating samples from a known distribution
 Given a probability density function, draw samples 

with the appropriate probability

 Easy for uniform, Gaussian 
 Use built in Matlab functions

 Harder for arbitrary pdfs, but approximation is 
possible

 Needed in Particle filters to perform measurement 
update
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 Generating samples from a distribution
 Given a state          and a distribution 
1. Create a vector X of evenly spaced values of x over 

the range of interest
 e.g. If g(x) is Gaussian, create X to span ±5σ about mean

2. Create an exact/approximate cumulative 
distribution vector, G(X)
 Integrate probability distribution g(x) to get G(x), and 

create the vector G(X)
 Or sum probabilities g(X) and normalize to get vector G(X)

3. Draw samples from a uniform distribution over [0,1]
4. Find closest value to sample in G(X)
5. Corresponding value of x is a sample, denoted xg

[i]
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 Sampling of g(x)
 1.

 2.
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 Sampling of g(x)
 3.-5.
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 Importance Sampling
 Goal: perform a calculation using a distribution, f(x), 

but without being able to sample it directly 
 f(x) = Target distribution, unknown

 Can first sample a different distribution, g(x), 
 g(x) = Proposal distribution, known
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 Importance Sampling
Then use relationship between distributions if known to define 

the weighting factor as

 Finally, resample from g(x), with weights w(x) to 
generate samples of f(x)

 If weighting factor is known, can perform this 
calculation without knowing f(x)
 Note that g(x)>0 wherever f(x)>0 for this to be valid
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 Importance Sampling
 Define weights for each sample xg

[i] in S

 Weights are the probability that we should include sample 
xg

[i] in our final sample set
 The importance of sample xg

[i]

 Not obvious how to calculate the weight at this point, will 
become clear in derivation of particle filter

 For now, found by dividing f(xg
[i]) by  g(xg

[i])
 This assumes complete knowledge of f(x),

 (yes, cheating) 14
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 Importance Sampling
 Importance sampling of f(x)

1. Define cumulative distribution W(x) based on weights w(x) 
as before (samples need not be ordered)

2. For each sample
1. Take uniform sample, u[i]

2. Find first element of W(x) that exceeds current sample
3. Add corresponding value of xg

[i] as a sample to sample 
set, S’ 
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 Example
 Target distribution f(x), proposal distribution g(x)
 20000 samples drawn from g(x) (1/25th of samples shown )
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 Example
 Weights for all x and sample weights for each sample
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 Example
 Importance sample points to generate new set
 New set is distributed according to f(x)

18

PARTICLE FILTERS



 The Particle Set
 A sample can be drawn from a proposal distribution

 The sample is assigned a weight

 The combination of sample and weight is a particle

 The particle set is used to generate an approximation 
to the target distribution

 I is the total number of particles in the set
 The approximation improves as 

19
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 Defining the usual model elements, in general 
probabilistic form
 State prior

 Motion Model

 Measurement Model

 Only restrictions on model elements are that samples 
can be drawn from them, (probabilities known for all 
conditional values) 20
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 Beliefs
 In particle filters, the belief distributions will be 

represented by particle sets
 The belief

 The predicted belief
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 Particle Filter Algorithm
1. Prediction Transformation

 Transform prior belief particle set to predicted belief 
through sampling

2. Importance factor
 Using measurement, calculate particle importance factor

 Probability of the measurement occurring, given the 
state was defined by the current particle

3. Resampling
 Transform predicted belief particle set to belief using 

importance sampling

 Note: steps 1,2 can be combined into a single loop, if 
prediction and measurement steps are combined 22
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 Particle Filter Components
1. Prediction Update

• The samples          are known from previous iteration
• The motion model and input are known
• It is therefore possible to generate samples of

• One new sample is drawn from each distribution defined 
by the prior samples

• The set of I new samples defines an approximation to
• Unit weighting on each particle    

23
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 Particle Filter Components
2. Measurement update

 The measurement is known but the state is not
 Would like to generate a particle set to represent bel(xt)

 Target distribution
 Have particle set representation of predicted belief 

 Proposal distribution
 Use importance sampling to generate belief update

 The proper weighting to use turns out to be 

24
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 Particle Filter Expanded Algorithm 
1. Prediction update

1. For each particle in 
1. Sample 

2. Weight

3. Add to 

2. Measurement update
1. For each particle in 

1. Calculate weighting 

2. For j = 1 to I
1. Draw particle          with probability 

2. Add to         as
25
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 Particle Filter Algorithm (simplified)
1. For each particle in 

1. Propagate sample forward using motion model (sampling) 

2. Calculate weight                                                (importance)

3. Store in interim particle set

2. Normalize weights
3. For j = 1 to I

1. Draw index i with probability                         (resampling)
1. Add to final particle set 26
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 Example
 Robot Localization

 Robot travels along hallway, can detect doors within a 
range with noisy sensor

 Knows probability of detecting a door, given a specific 
location

 Knows motion model, and has uniform initial belief

27
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 Example
 Step one

 Sample uniformly over state space
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 Example
 Step Two

 Propagate samples through motion model

29

PARTICLE FILTERS



 Example
 Step three

 Take a measurement, and use                     to calculate 
weights

 Particles that are more likely have higher weights
 Starting to narrow down position options
 Still difficult to estimate state (mean?) 30
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 Example
 Step four

 Perform resampling to get more particles in areas of higher 
probability

 Reset weights to 1, as particle locations capture probability 
information

 Repeat
 The following particle set shows how the motion 

model distributes the identical particles that result 
from resampling
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 Example
 After a second measurement, weights are again 

assigned to the particles

 True state starts to become apparent
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 Example
 After resampling again, propagate with motion model 

sampling
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 Derivation 
 Consider the particles as state sequence samples

 Form belief over entire sequence

 Instead of just

 This is an enormous state to approximate with a set 
of particles, but no matter, for derivation only

34
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 Derivation
 Using Bayes Theorem, expand belief about last 

measurement

 The Markov assumption remains valid
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 Derivation
 Conditional probability can be used to expand the 

last distribution 

 Apply the Markov assumption again yields

36
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 Derivation
 The sequence x0:t-1 does not depend on ut

 Breaking into steps
 Prediction

 ith particle generated by this distribution is an element of 
the predicted belief particle set
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 Derivation
 The measurement update uses importance sampling 

to generate a particle set representation of belief
 Weighting, based on relation to predicted belief is

 Which confirms use of measurement model as weighting 
parameter

 This confirms that particles sets are distributed according 
to full belief sequences, which means must hold for current 
state too 38
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 Example
 Returning to the temperature control problem

 State is current temperature
 One dimensional example
 Prior: Uniform over temperature range 

 Motion Model: Decaying temperature + furnace input + 
disturbances (opening doors, outside effects)
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 Example
 Measurement Model

 Directly measure the current temperature

 Controller design
 Bang bang control, based on current estimate of 

temperature

40
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 Particle filter calculations
1. Transform and sample from Gaussian

2. Define weights from measurement model, with 
Gaussian noise centered at predicted measurement 
location

3. Resample from predicted belief particle set using 
weights to generate belief particle set 41
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 Resulting particle filter code
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%Particle filter estimation
for i=1:I

e = sqrt(R)*randn(1);
Xp(i) = A*X(i) + B*u(t) + e;
w(i) = normpdf(y(t),C*Xp(i),Q);

end
W = cumsum(w);
W = W/max(W);
for j=1:I

i = find(W>rand(1),1);
X(j) = Xp(i);

end



 Priors, comparing KF and Particle filter
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 Prediction
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 Belief
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 Comparison of Gaussian parameters
 KF vs PF (1000, 100, 10)
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 Comparison of Gaussian parameters
 KF vs PF (1000, 100, 10)
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 Comparison of Gaussian parameters
 KF vs PF (1000, 100, 10)
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 Comparison of run times
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Algorithm Run Time
Kalman Filter 0.005164
Particle Filter -10 0.043191
Particle Filter -20 0.06965
Particle Filter -100 0.2188
Particle Filter -1000 1.8740



 EKF/UKF/Particle showdown
 Aircraft flyover example
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 Results
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 Not always better, hard to tune
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 Interpreting particle sets
 In order to use a particle filter, must somehow 

extract relevant information from particles
 Density Extraction

 Determining a probability density function from a set of 
particles
 Gaussian approximation

 Simply calculate mean and covariance of set
 Only really useful for unimodal distributions
 Used most often for control applications 

 K-means algorithm
 Approximate density with a mixture of K Gaussians
 Requires clustering of particles

 Kernel density estimation
 Use each particle as the center of a continuous kernel 

function
 Add all kernels together to generate a pdf
 Linear in the number of particles
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 Sample Variance
 Since continuous distributions are approximated by a 

discrete set of samples, errors occur
 Each time a particle filter is run (with random 

sampling) a different particle set will result

 Extreme case:
 No motion 
 No measurements, uniform weights on each particle 
 Uniform prior over 2D space
 What will happen to the particle set as we update the 

particle filter?
 Essentially repeating the resampling step with uniform 

weight on all particles.
54
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 Example
 Particle deprivation
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 Excessive resampling can lead to particle 
deprivation
 Motion sampling adds variety to particle set
 Do not resample when no motion occurs

 Instead update weights multiplicatively for each 
measurement

 If problems arise
 Apply low variance sampling
 Artificially disperse samples as well
 Add random samples after resampling

 Referred to as variance reduction
 Reducing the variance in the particle set approximation
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 Summary
 Use particle sets instead of parameterizations to 

represent distributions
 Inherently an approximation, introduces errors
 Propagate samples through motion model by 

sampling from model distribution
 Weight samples using measurement probability 

given sample state as true state
 Define belief distribution through samples and 

weights (particles) or post resampling
 Many extensions, nuances, issues, advanced 

techniques
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