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 Bayes Filter Framework
 Kalman Filter
 Extended Kalman Filter
 Particle Filter
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 The Bayes Filter forms the foundation for all 
other filters in this class
 As described in background slides, Bayes rule is the 

right way to incorporate new probabilistic 
information into an existing, prior estimate 

 The resulting filter definition can be implemented 
directly for discrete state systems

 For continuous states, need additional assumptions, 
additional structure to solve the update equations 
analytically
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 State xt
 All aspects of the vehicle and its environment that can impact the 

future
 Assume the state is complete

 Control inputs ut
 All elements of the vehicle and its environment that can be controlled

 Measurements yt
 All elements of the vehicle and its environment that can be sensed

 Note: sticking with Thrun, Burgard, Fox notation
 Discrete time index  t
 Initial state is x0
 First, apply control action u1
 Move to state x1
 Then, take measurement y1
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 Motion Modeling
 Complete state:

 At each time t, xt-1 is a sufficient summary of all previous 
inputs and measurements

 Application of Conditional Independence
 No additional information is to be had by considering 

previous inputs or measurements

 Referred to as the Markov Assumption
 Motion model is a Markov Chain
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 Measurement Modeling
 Complete state: 

 Current state is sufficient to model all previous states, 
measurements and inputs

 Again, conditional independence

 Recall, in standard LTI state space model, measurement 
model may also depend on the current input
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 Combined Model
 Referred to as Hidden Markov Model (HMM) or 

Dynamic Bayes Network (DBN)
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 Example Discrete State Motion Model: 
 States: {No Rain, Drizzle, Steady, Downpour}
 Inputs: None
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 For discrete states, the motion model can be 
written in matrix form
 For each input ut, the nXn motion model matrix is

 Each row defines the probabilities of transitioning to state 
xt from all possible states xt-1

 Each column defines the probabilities of transitioning to 
any state xt from a specific state xt-1

 Again, the columns must sum to 1 10
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 Example:
 Motion Model in Matrix Form 

 No inputs, one matrix
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 Example Measurement Model:
 States: {No Rain, Drizzle, Steady, Downpour}
 Measurements: {Dry, Light, Medium, Heavy}

 Again, the columns sum to 1
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 Example System Evolution
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 Aim of Bayes Filter
 To estimate the current state of the system based on 

all known inputs and measurements.

 That is, to define a belief about the current state 
using all available information:

 Known as belief, state of knowledge, information state
 Depends on every bit of information that exists up to time t

 Can also define a belief prior to measurement yt

 Known as prediction, predicted state 14
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 Problem Statement
 Given a prior for the system state

 Given motion and measurement models

 Given a sequence of inputs and measurements

 Estimate the current state distribution (form a belief 
about the current state) 15
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 Bayes Filter Algorithm 
 At each time step, t, for all possible values of the 

state x
1. Prediction update (Total probability)

2. Measurement update (Bayes Theorem)

 η is a normalizing constant that does not depend on the 
state (will become apparent in derivation)

 Recursive estimation technique 16
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 Recall Bayes Theorem

 Terminology
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 Derivation
 Proof by induction

 Demonstrate that belief at time t can be found using belief 
at time t-1, input at t and measurement at t

 Initially

 At time t, Bayes Theorem relates xt, yt
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 Derivation
1. Measurement model simplifies first numerator term

2. Second numerator term is definition of belief 
prediction

3. Denominator is independent of state, and so is 
constant for each time step. Define the normalizer,  
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 Derivation
 Summarizing the three substitutions

 This is exactly the measurement update step
 Requires the measurement yt to be known  

 However, we now need to find the belief prediction
 Done using total probability, over previous state
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 Derivation
1. This time, the motion model can be incorporated

2. And we note that the control input at time t does 
not affect the state at time t-1
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 Derivation
 And so the prediction update is defined

 Which completes the proof by induction
 For this step, we need the control input to define the correct 

motion model distribution

 If state, measurements, inputs are discrete, can 
directly implement Bayes Filter
 Prediction update is summation over discrete states
 Measurement update is multiplication of two vectors

22

BAYES FILTER

1 1 1( ) ( | , ) ( )t t t t t tbel x p x x u bel x dx   



 If state, measurement, inputs are continuous, 
must define model or approximation to enable 
computation
 Kalman Filter: 

 Linear motion models
 Linear measurement models
 Additive Gaussian disturbance and noise distributions

 Extended Kalman Filter/Unscented Kalman Filter: 
 Nonlinear motion models
 Nonlinear measurement models
 Additive Gaussian disturbance and noise distributions

 Particle Filter:
 (Dis)continuous motion models
 (Dis)continuous measurement models
 General disturbance and noise distributions

23

BAYES FILTER



 Discrete Bayes Filter Example
 Problem: Detect if a door is open/closed with a robot 

that can sense the door position and pull the door 
open

 State: door={open, closed}
 State Prior (uniform):
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 Example
 Inputs: arm_command={none, pull}
 Motion Model

 If input = none, do nothing:

 If input = pull, pull the door open
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 Example
 Measurements: meas={sense_open, sense_closed}
 Measurement model (noisy door sensor):
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 Example
 At time step 1, input = none
 Perform state prediction update

 Calculate belief prediction for each possible value of 
state
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 Example
 At time step 1,measurement y1 = sense_open
 Measurement update

 Calculate for each possible value of state

 Calculate normalizer and solve for posterior

28

BAYES FILTER

1 1 1 1( ) ( | ) ( )bel x p y x bel x

1 1 1 1( ) ( _ | ) ( )
0.6 0.5 0.3

bel open p sense open open bel open
 


  

1 1 1 1( ) ( _ | ) ( )
0.2 0.5 0.1

bel closed p sense open closed bel closed
 


  

1 2.5
0.3 0.1

  


1

1

( ) 0.75
( ) 0.25

bel open
bel closed






 Example
 At time step 2, a pull and a sense_open
 Then state propagation

 And measurement update

 In summary: 
 Uniform prior, do nothing, measure open: bel(open1) = 0.75
 Pull open, measure open: bel(open2) = 0.983 29
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 Example 2: Histogram Filter
 Motion of  robot in a nXn grid

 State: 
 Position = {x11, x12, …, x1n, , …,  xnn}

 Input: 
 Move = {Up, Right, Down, Left}
 40% chance the move does not happen
 Cannot pass through outer walls

 Measurement: Accurate to within 3X3 grid
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 Example 2:
 Prior over states

 Assume no information, uniform
 Vector of length n2

 Motion model
 Given a particular input and 

previous state, probability of moving 
to any other state
 nXn state, one for each grid point
 4 input choices
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 Example 2
 Measurement Model

 Given any current state, probability of 
a measurement

 Same number of measurements as 
states

 Same 3X3 matrix governs all interior 
points

 Boundaries cut off invalid 
measurements and require 
normalization

 Very simplistic and bloated model
 Could replace with 2 separate 

states and measurements to 
perpendicular walls
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 Example 2 – Motion Model code
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mot_mod = zeros(N,N,4); 
for i=1:n

for j=1:n
cur = i+(j-1)*n;
% Move up
if (j > 1)

mot_mod(cur-n,cur,1) = 0.6; 
mot_mod(cur,cur,1) = 0.4; 

else
mot_mod(cur,cur,1) = 1; 

end
% Move right
if (i < n)

mot_mod(cur+1,cur,2) = 0.6; 
mot_mod(cur,cur,2) = 0.4; 

else
mot_mod(cur,cur,2) = 1; 

end
… 



 Example 2 – Measurement Model 

34

BAYES FILTER . . .11x 1nx

%% Create the measurement model
meas_mod_rel = [0.11 0.11 0.11;  

0.11 0.12 0.11;
0.11 0.11 0.11];

% Convert to full measurement model
% p(y_t | x_t)
meas_mod = zeros(N,N);
% Fill in non-boundary measurements
for i=2:n-1

for j=2:n-1
cur = i+(j-1)*n;
meas_mod(cur-n+[-1:1:1],cur) = meas_mod_rel(1,:); 
meas_mod(cur+[-1:1:1],cur) = meas_mod_rel(2,:); 
meas_mod(cur+n+[-1:1:1],cur) = meas_mod_rel(3,:); 

end
end
…



 Example 2 – Makin’ movies!
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videoobj=VideoWriter('bayesgrid.mp4','MPEG-4');
truefps = 1;
videoobj.FrameRate = 10; %Anything less than 10 fps fails.
open(videoobj);

figure(1);clf; hold on;
beliefs = reshape(bel,n,n);
imagesc(beliefs);
plot(pos(2),pos(1),'ro','MarkerSize',6,'LineWidth',2)
colormap(bone);
title('True state and beliefs')
F = getframe;
% Dumb hack to get desired framerate
for dumb=1:floor(10/truefps)

writeVideo(videoobj, F);
end
…



 Example 2 – Simulation code
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%Main Loop
for t=1:T

%% Simulation
% Select motion input
u(t) = ceil(4*rand(1));
% Select a motion
thresh = rand(1);
new_x = find(cumsum(squeeze(mot_mod(:,:,u(t)))*x(:,t))>thresh,1);
% Move vehicle
x(new_x,t+1) = 1;
% Take measurement
thresh = rand(1);
new_y = find(cumsum(meas_mod(:,:)*x(:,t+1))>thresh,1);
y(new_y,t) = 1;
% Store for plotting
…



 Example 2 – Bayes Filter
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…
%% Bayesian Estimation
% Prediction update
belp = squeeze(mot_mod(:,:,u(t)))*bel;

% Measurement update
bel = meas_mod(new_y,:)'.*belp;
bel = bel/norm(bel);

[pmax y_bel(t)] = max(bel); 

%% Plot beliefs
…



 Example 2:
 Results
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 Bayes Filter Framework
 Kalman Filter
 Extended Kalman Filter
 Particle Filter
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 Rudolf Kalman 1960 (BS, MS: MIT, PhD: 
Columbia)

 Discrete version (Kalman filter)
 Continuous version (Kalman-Bucy filter)
 Many other versions, improvements, 

modifications 40
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The filter is named after Rudolf E. Kalman, though Thorvald Nicolai
Thiele[1] and Peter Swerling developed a similar algorithm earlier.
Stanley F. Schmidt is generally credited with developing the first
implementation of a Kalman filter. It was during a visit of Kalman to
the NASA Ames Research Center that he saw the applicability of his
ideas to the problem of trajectory estimation for the Apollo program,
leading to its incorporation in the Apollo navigation computer. The filter
was developed in papers by Swerling (1958), Kalman (1960), and
Kalman and Bucy (1961).

Wikipedia



 Kalman Filter Modeling Assumption
 Continuous state, inputs, measurements
 Prior over the state is Gaussian

 Motion model, linear with additive Gaussian 
disturbances

 Often, robotics systems are more easily described in 
continuous domain
 Convert to discrete time using matrix exponential
 Matlab contains tools to perform this conversion (c2d, d2c) 41
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 Kalman Filter Modeling Assumption
 Measurement model also linear with additive 

Gaussian noise

 Can add in input dependence to match up with 
controls literature
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 Full Model
 State prior

 Motion model

 Measurement model
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 Assume belief is Gaussian at time t

 μt is the best estimate of the current state at time t
 ∑t is the covariance, indicating the certainty in the 

current estimate

 Will be able to demonstrate the predicted belief 
at the next time step is Gaussian

 And that the belief at next time step is also 
Gaussian
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 Goal: 
 To find belief over state as accurately as possible 

given all available information
 Minimize the mean square error of the estimate (MMSE 

estimator)

 Same as least square problem

 Using an unbiased estimator

 On average, your estimate is correct!
45
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 Goal
 The MMSE estimate can be written as

 And is equivalent to minimizing the trace of the error 
covariance matrix

 Proof:
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 Kalman Filter Algorithm 
 At each time step, t, update both sets of beliefs

1. Prediction update

2. Measurement update

 Kalman Gain, Kt
 Blending factor between prediction and measurement
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 Example
 Temperature control

 State is current temperature difference with outside
 One dimensional example
 Prior: fairly certain of current temperature difference

 Motion Model: Decaying temperature + furnace input + 
disturbances (opening doors, outside effects)
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 Example
 Measurement Model

 Directly measure the current temperature difference

 Controller design
 Bang bang control, based on current estimate of 

temperature difference
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 Example
 Simulation
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for t=1:length(T)
% Select control action

if (t>1) u(t)=u(t-1); end
if (mu > 10)

u(t) = 0;
elseif (mu < 2);

u(t) = 1;
end

% Update state
e = sqrt(R)*randn(1);
x(t+1) = A*x(t)+ B*u(t) + e;

% Determine measurement
d = sqrt(Q)*randn(1);
y(t) = C*x(t+1) + d;    



 Example
 Estimation

 Matrix inverse 0(n2.4), matrix multiplication O(n2)
 When implementing in Matlab, inv( ) performs 

matrix inverse for you 
 For embeddded code, many libraries exist

 Try Gnu Scientific Library, easy starting point
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% Prediction update
mup = A*mu + B*u(t);
Sp = A*S*A' + R;

% Measurement update
K = Sp*C'*inv(C*Sp*C'+Q);
mu = mup + K*(y(t)-C*mup);
S = (1-K*C)*Sp;



 Example
 Beliefs during the first time step

 Prior
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 Example
 Beliefs during the first time step

 Prediction Update: increased variance, shifted mean
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 Example
 Beliefs after the first time step

 Measurement update: decreased variance
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 Example
 Trajectories over time
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 Example
 Measurements over time
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 Example
 Estimates over time
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 Recall Goal: 
 To find belief over state as accurately as possible 

given all available information
 Minimize the mean square error of the estimate (MMSE 

estimator)

 Same as least square problem

 Using an unbiased estimator

 On average, your estimate is right!
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 Derivation

 Define the innovation
 The difference between the measurement and the expected 

measurement given the predicted state and the 
measurement model

 Assume the form of the estimator is a linear 
combination of the predicted belief and the 
innovation
 The following form turns out to be unbiased

59

KALMAN FILTER

Innovation t t t ty C  

( )t t t t t tK y C    



 Steps

 Prediction update
 Find update rule for mean, covariance of predicted belief, 

given input and motion model

 Measurement update
 Solve MMSE optimization problem to find update rule for 

mean, covariance of belief  given measurement model and 
measurement
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 Prediction Update
 Only new information is input ut

 Prediction update is a linear transformation of belief 
at previous time step
 Motion model is

 Motion noise, previous belief are Gaussian so this is an 
addition of Gaussian distributions

 Therefore the predicted mean and covariance are

61

KALMAN FILTER

1t t t t t tx A x B u   

1

1

0t t t t t
T

t t t t t

A B u

A A R

  



  

   

1 1 1( ) ~ ( , )t t tbel x N    ~ (0, )t tN R



 Measurement update
 First, lets define the form of the error covariance, 

substituting in the form of the mean update and the 
measurement model

 But, by the assumption of the form of the estimator, 
and the measurement model
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 Measurement update
 Next, reorganize terms of the covariance

 But the middle term is zero in expectation
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 Measurement Update
 Recall multiplication by a constant yields

 In the above, numerous constants
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 Measurement Update
 The resulting covariance is

 The expectations that remain are known quantities

 Which leaves us with a quadratic equation in Kt
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 Measurement update
 We now have the covariance in a form that can be 

optimized

 We need two identities to find this minimum
 Differentiation of linear matrix expression

 Differentiation of quadratic matrix expression
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 Measurement update
 The optimization is done by setting the derivative of 

the trace w.r.t the Kalman gain to 0

 Taking the matrix derivative w.r.t Kt
 Two linear terms and one quadratic
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 Measurement update
 Set the derivative to 0, noting that covariance is 

symmetric, and AXAT preserves symmetry

 Simplifying

 And finally, we arrive at the Kalman gain equation
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 Measurement Update
 So far, we have found the optimal gain Kt which 

minimizes mean square error in the measurement 
update for the mean

 Next, we need to simplify the covariance update 
using  this result for the Kalman gain
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 Measurement Update
 Recall the Covariance update was

 Substituting in the Kalman gain gives
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 Measurement Update
 Fortunately, almost everything cancels and we are 

left with
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 Kalman Filter Algorithm 
 At each time step, t, update both sets of beliefs

1. Prediction update

2. Measurement update

 Kalman Gain, Kt
 Blending factor between prediction and measurement
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 Summary
 Follows same framework as Bayes filter
 Requires linear motion and Gaussian disturbance
 Requires linear measurement and Gaussian noise
 It is sufficient to update mean and covariance of 

beliefs, because they remain Gaussian
 Prediction step involves addition of Gaussians
 Measurement step seeks to minimize mean square 

error of the estimate
 Expand out covariance from definition and measurement 

model
 Assume form of estimator, linear combination of prediction 

and measurement
 Solve MMSE problem to find optimal linear combination
 Simplify covariance update once gain is found
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 Relation to Bayes Filter Problem Formulation
 State prior

 Motion model

 Measurement model

 Beliefs
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 Relation to Bayes Filter Algorithm 
1. Prediction update (Total probability)

 Insert normal distributions

 Separate out terms that depend on current state
 Manipulate remaining integral into a Gaussian pdf

form of previous state
 Integrate over full range to get 1
 Manipulate remaining terms and solve for Kalman

prediction equations.

 Refer to Thrun, Burgard & Fox Chap. 3 for details 75
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 Relation to Bayes Filter Algorithm 
2. Measurement update (Bayes Theorem)

 Reorganize exponents and note it remains a Gaussian
 For any Gaussian:

 Second derivative of exponent is inverse of covariance
 Mean minimizes exponent,

• Set first derivative of exponent to 0 and solve
 Use this to solve for mean and covariance of belief

 where Kt is the Kalman gain as before 76
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 Example
 3D Linear motion model for three thruster AUV 

(heading constant)
 State Input 

 Continuous dynamics for 
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 Example – Omni-directional AUV
 Discrete Dynamics from zero order hold, dt = 0.1s

 Disturbances
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 Example – Omni-directional AUV
 Measurement Model

 Can only measure position (relative to known objects)

 With correlated measurement noise
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 Example 
 Control inputs 

 This time different frequencies of sinusoidal input

 Simulation run for 10 seconds, or 101 time steps

 Prior distribution
 Fairly course initialization
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 Example
 Ideal results: very low noise and disturbance levels
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 Example
 Results with larger noise and disturbances
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 Example
 Effect of decreased motion disturbances
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 Example
 Effect of decreased measurement noise
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 Belief mean is tradeoff between prediction and 
measurement

 Kalman gain determines how to blend estimates

 If Qt is large, inverse is small, so Kalman gain 
remains small
 When measurements are high in covariance, don’t 

trust them!

 If Rt is large, then so is predicted belief 
covariance, so Kalman gain becomes large
 When model is affected by large unknown 

disturbances, don’t trust the predicted motion!
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 Example
 Evolution of Kalman Gain
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 Steady state Kalman Filter
 For constant noise/disturbance models, it is possible 

to use steady state values for the Kalman gain

 Set ∑ = ∑t = ∑t-1 in the Kalman filter update equations and 
solve for ∑

 Referred to as the Discrete Algebraic Ricatti Equation 
(DARE), Matlab will solve it for you

 Can also run Kalman filter until convergence and 
then eliminate gain update step (matrix inversion)
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 Example
 Incorrect measurement distribution (covariance 

actually much larger)

 Estimate tracks measurements too closely
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 Multi-Rate Kalman Filter
 At each time step, it is possible to use different 

measurement models 
 Time varying Ct and Qt

 Identify a base update rate
 Find greatest common divisor of sample rates

 e.g. GPS 5Hz, Sodar 12 Hz, Base rate 60 Hz
 Create discretized motion model at base rate
 At each timestep

1. Perform prediction update
2. If new measurements exist, perform measurement update 

for those measurements only
 Select appropriate Ct and Qt
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 Example
 Multi-rate Kalman Filter

 Add in velocity measurements at 100 Hz
 Base update rate 0.01 s 
 Create two separate types of measurement updates

 Velocity only measurement for 9 time steps

 Full state measurement on the 10th time step
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 Example
 Multi-rate estimation
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 Alternate formulation: Information Filter
 Provides possibility for computational savings when 

taking many redundant measurements
 Based on information theory concepts (Fisher 

Information)

 Define the Information Matrix as the inverse of the 
covariance

 Define the Information vector as
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 Information Filter
 Substitution into the Kalman filter equation yields

1. Prediction update

2. Measurement update
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 Information Filter
 The matrix inversion is now embedded in the 

prediction update
 Belief and predicted belief inverse depend on the number of 

states
 For Kalman filter, gain inverse depends on the number of 

measurements
 This can be a significant savings in some cases

 To compute state estimate 

 Covariance already calculated 
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 Bayes Filter Framework
 Kalman Filter
 Extended Kalman Filter
 Particle Filter
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 Kalman Filter requires linear motion and 
measurement models
 Results in compact, recursive estimation technique
 Not very realistic for most applications

 Nonlinear models eliminate the guarantee that 
the belief distributions remain Gaussian
 No longer able to simply track mean and covariance
 No closed form solution to Bayes filter algorithm can 

be found for general nonlinear model
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 Effect of nonlinearity on Gaussian distribution
 Linear transformation
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 Arbitrary distribution generation
 Take 5,000,000 samples of original Gaussian

 Apply nonlinear transformation to each sample

 Create histogram with 100 bins and normalize counts

 Best Gaussian fit generation
 Calculate mean and covariance of 5,000,000 

transformed samples
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 Effect of nonlinearity on Gaussian distribution
 Nonlinear transformation
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 Effect of nonlinearity on Gaussian distribution
 Nonlinear transformation
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 Effect of nonlinearity on Gaussian distribution
 Nonlinear transformation
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 Extended Kalman Filter
 A direct generalization of the Kalman filter to 

nonlinear motion and measurement models

 Relies on linearization about current estimate 

 Works well when the problem maintains locally linear and 
Gaussian characteristics

 Computationally similar to Kalman Filter

 Covariance can diverge when approximation is poor!
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 Extended Kalman Filter Modeling Assumption
 Prior over the state is Gaussian

 Motion model, nonlinear but still with additive 
Gaussian disturbances

 Measurement model also nonlinear with additive 
Gaussian noise

 Nonlinearity destroys certainty that beliefs remain 
Gaussian 103
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 Recall Kalman Filter Algorithm 
1. Prediction update

2. Measurement update

 Bt only enters predicted mean calculation
 At,Ct also affect covariance
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 How to update beliefs while maintaining Gaussian form 
of distribution?

 Key idea of EKF

 The mean can be propagated through the nonlinear model

 The covariance can be updated with a locally linear 
approximation to the model
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 First Order Taylor Series Expansion

 Motion model
 Linearize about most likely state (the previous mean)
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 First Order Taylor Series Expansion

 Measurement Model
 Linearize about most likely state (the predicted mean)

 Both models are now linear
 Only valid near point of linearization
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 Prediction Update
 Only new information is input ut

 Prediction update is a linear transformation of belief 
at previous time step
 Motion model is

 Motion disturbance, previous belief are Gaussian so this is 
remains addition of Gaussian distributions

 Therefore the predicted mean and covariance are
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 Measurement Update
 Follows same arguments as Kalman Filter derivation

 MMSE estimator
 Assume form of measurement update (linear, Kalman Gain)
 Substitute in approximate measurement and motion models
 Mean update relies on nonlinear model
 Gain, covariance update rely on linearization 
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 Extended Kalman Filter Algorithm
1. Prediction Update

2. Measurement Update

110

EXTENDED KALMAN FILTER

1 1

1
1

1

1

( , )

( , )
t t

t t t
t x

t t t
T

t t t t t

G g x u
x

g u

G G R



 
 


 










   

1

( )

( )
( ( ))

( )

t t

t t
t x

T T
t tt t t t t

t t t t t

tt t t

H h x
x

K H H H Q
K y h

I K H



  









   
  

   



 Example
 Radar measurement of an airplane position while 

flying at constant altitude and velocity
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 Example
 State Initial

 Motion Model
 Linear, no input (very simple)
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 Example
 Measurement Model

 Using state variables

 Linearization of measurement model
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 Sample Code
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%% Extended Kalman Filter Estimation
% Prediction update
mup = Ad*mu;
Sp = Ad*S*Ad' + R;

% Measurement update
Ht = [(mup(1))/(sqrt(mup(1)^2 + mup(3)^2)); 

0;
(mup(3))/(sqrt(mup(1)^2 + mup(3)^2))]’;

K = Sp*Ht'*inv(Ht*Sp*Ht'+Q);
mu = mup + K*(y(:,t)-sqrt(mup(1)^2 + mup(3)^2));
S = (eye(n)-K*Ht)*Sp;



 Results
 Low noise, fairly accurate prior
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 Results
 Low noise, incorrect prior
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 Results
 Noisy noise, big disturbances,  incorrect prior
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 Results
 Symmetrically incorrect prior
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 Summary
 Direct extension of KF to nonlinear models
 Use Taylor series expansion to find locally linear 

approximations
 No longer optimal
 Most effective when covariance is low 

 Local linear approximation more likely to be accurate over 
range of distribution

 Covariance update may diverge
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 Reminder on generating multivariate random 
noise samples
 Define two distributions, the one of interest and the 

standard normal distribution

 If the covariance is full rank, it can be diagonalized
 Symmetry implies positive semidefiniteness

 Can now relate the two distributions (linear identity)
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 To implement this in Matlab for simulation 
purposes
 Define μ,∑

 Find eigenvalues , λ, and eigenvectors, E of ∑

 The noise can then be created with
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 Note on confidence ellipses
 Lines of constant probability 

 Found by setting pdf exponent to a constant 
 Principal axes are eigenvectors of covariance
 Magnitudes depend on eigenvalues of 

covariance
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 The EKF used linearization about the 
predicted/previous state estimate to update the 
mean and covariance of the current estimate
 Approximation of a nonlinear transformation of a 

Gaussian distribution by linear transformation of the 
mean and covariance

 There are other ways to approximate this 
transformation
 Unscented transform leads to better estimates of 

resulting mean and covariance in some cases
 Relies on a set of samples known as sigma points or 

particles, that get transformed directly
 UKF first published in 1997, still being discussed, 

extended, solidified. 124
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 Key idea: Unscented transform
 It is more accurate to approximate a distribution 

using samples than it is to approximate an arbitrary 
nonlinear function through linearization.

 Let’s first go back to the nonlinear function of a 
Gaussian and see what the EKF is doing.
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 Effect of nonlinearity on Gaussian distribution
 Nonlinear transformation
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 Nonlinear distribution generation
 Take 5,000,000 samples of original Gaussian

 Apply nonlinear transformation to each sample

 Create histogram with 100 bins and normalize counts

 Best Gaussian fit generation
 Calculate mean and covariance of 5,000,000 

transformed samples
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 Extended Kalman Filter approximation 
generation
 Linearize nonlinear function about mean

 Propagate mean through nonlinear function and 
covariance through linearized function
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 Linearization  over-
predicts mean shift
 Assumes symmetry of 

atan

 Covariance over-
predicted as well
 atan has effect of piling 

up tails at +/- 1.57
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 The unscented transform can also be used
 Linearization is a first order approximation
 The unscented transform is second order accurate, 

and can be tuned to reduce fourth order errors

 The transform relies on a set of specially chosen 
samples known as sigma points
 2n+1 points chosen to capture the transformation of 

the distribution
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 In  1D case, the unscented transform select 3 
points

 And we select weights so that we can recover the 
original mean and variance
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 We then pass the sigma points through the 
nonlinear function

 And construct the new mean and variance using 
the same weights
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 In general, the sigma points are chosen as follows

 Generalized Std. Dev. is square root of covariance
 Here the square root of the covariance matrix is 

ambiguous, but must satisfy 
 Can use sqrtm, which returns the unique solution with non-

negative eigenvalues, 
 Or use chol, the cholesky decomposition, which returns an 

upper triangular square root and is very efficient 
 Assumes symmetry 
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 The parameter λ defines the weights to use for 
generating the mean and covariance, can be 
tuned

 α governs the spread of the sigma points about the 
mean 
 the larger the α the larger the spread of sigma points
 Usually, 

 κ ensures positive semi-definiteness if  
 Can be left at 0 safely (ignored)
 Also affects the spread of sigma points

137

UNSCENTED TRANSFORM

 2 n n    

0 

0 1 



 The sigma points are then propagated through 
the nonlinear function

 And a mean and covariance is extracted using 
special weights for the sigma points
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 The weights are defined as

 With another tunable parameter β, 
 Can be ignored
 Or set to 2 

 reduces errors in some of the fourth order terms for a 
Gaussian prior 
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 Select 
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 Select
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 Select
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 Incorporating this method of distribution 
transformation into the Bayesian framework is 
possible

 There are two nonlinear functions to deal with
 Two unscented transforms are needed per timestep

 The measurement model depends on the state we are 
trying to estimate
 The state is augmented by the measurement noise states 

and a joint probability density function is updated
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 Example repeat
 Radar measurement of an airplane position while 

flying at constant altitude and velocity
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 Example
 State Initial

 Motion Model

 Measurement Model 
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 Simulation results- low disturbances, noise
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 Error plot for position error
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 Simulation results, higher disturbances
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 Error plot for position error
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 Unscented Kalman Filter Modeling Assumptions
 Prior over the state is Gaussian

 Motion model, nonlinear but still with additive 
Gaussian disturbances

 Measurement model also nonlinear with additive 
Gaussian noise

 Nonlinearity destroys certainty that beliefs remain 
Gaussian 150
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 Prediction step
 Propagation of belief at t-1 through motion model

 Pick sigma points

 Propagate through motion model
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 Prediction step
 Unscented prediction step

 Calculate mean and covariance, adding motion covariance 
to result
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 Measurement step
 Recall from Bayes filter, we are trying to define

 We have the mean and covariance of predicted belief

 We need to propagate this belief through another 
unscented transform
 To do this, we need to look at the joint unscented transform
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 Joint transform 
 with additive noise in model

 Mean and covariance is found as before
 Generate sigma points
 Propagate through model
 Find mean as before and covariance, cross-covariance as
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 Magic trick (Schur’s complement)
 If

 Then

 Can in fact derive KF updates using this as well
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 Measurement Step
 Form the joint distribution of           given all inputs 

and all but the latest measurement

 Solve for all components and apply Schur’s
complement

 But some of these we know already
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 Measurement step
 The rest we can approximate with the unscented 

transform
 Generate new sigma points from the predicted belief

 Propagate through measurement model
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 Measurement step
 Then the measurement terms and cross terms can be 

approximated as
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 Measurement Step
 Finally, applying Schur’s complement

 To the above joint distribution

 And therefore,
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 Summary
 Prediction Step
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 Summary
 Measurement step
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 Summary
 Measurement Step
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 Summary
 Similar computation time to EKF 

 longer due to square root and inverse

 Potentially capable of reducing errors in propagation 
of beliefs through nonlinear functions

 Tuning effects unclear, can lead to strange results

 Benefit minimal when nonlinearities are modest, or 
uncertainty is low
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