
ME 597: AUTONOMOUS MOBILE ROBOTICS
SECTION 2 – COORDINATE TRANSFORMS

Prof. Steven Waslander

 Coordinate Frames and Transforms
 Rotation Matrices
 Euler Angles
 Quaternions
 Homogeneous Transforms

2

OUTLINE

 Used to define environment, vehicle motion
 Right-handed by convention

 Inertial frame – fixed, usually relative to the earth
 GPS: Earth Centered Earth Fixed (ECEF), Latitude,

Longitude, Altitude (LLA), East North Up (ENU)
 Aeronautics: North East Down (NED)

 Body/sensor frame – attached to vehicle/sensor,
useful for expressing motion/measurements
 Body origin at vehicle CG, sensor at optical center

3

COORDINATE FRAMES

X

Y

Z

x

y

z

 2D Rigid Body Motion
 For ground robots, two dimensional motion definition

often enough
 If robot has a heading, third axis is implicit
 Right hand rule defines direction of rotation

4

COORDINATE FRAMES

O

IY

IX



IZ

 Inertial Frame:
 Vehicle State:

5

COORDINATE FRAMES

O

IY

IX



x

y

,I IX Y

[, ,]I x y 

 Body Frame:
 Vehicle State:

6

COORDINATE FRAMES

O

BY BX

x

,B BX Y

O

IY

IX



x

y

[0,0,0]B 

 Body frame useful for understanding sensor
measurements, environment relative to vehicle
 Bearing and range to an obstacle:

7

COORDINATE FRAMES

BY
BX

,

,

cos
sin

object B

object B

x
y

 

 








BY
BX

 Conversion between Inertial
and Body coordinates is
done with a translation
vector and a rotation matrix
 Rotate vectors using 2X2

rotation matrix

 Full transformation is
translation and then rotation

8

ROTATION MATRICES

cos sin
()

sin cos
B
IR

 


 
 

   

()

()

B I
B I I B

I B
I B B I

p R p O

p R p O





 

 

OI

IY

IXx

y

p

OB

 To map the location of the obstacle in a local
map, need to transform the current measurement
into the map reference frame:

9

COORDINATE TRANSFORMATION

BY
BX

O

IY

IX4r
mx 

1r
my 

2o
rx 

2.5o
ry 

60r
m  

  1

0.5 0.866 2 4
0.866 .5 2.5 1

o o B
I B IB

Io o B
I B I

x x x
R

y y y

     
      

          
     

      
     

1.165 4
2.982 1

2.835
3.982

   
    
   
 

  
 

()I B
I B B Ip R p O 

 In fact, the rotation can also
be seen as a 3D rotation,
about the ZI axis.

 Can be generalized to
arbitrary rotations about any
axis (Euler angles)

 Rotation matrices are
orthogonal

10

ROTATION MATRICES

cos sin 0
() sin cos 0

0 0 1
R

 
  

 
   
  

O

IY

IXx

y

1() ()TR R  

 Often handy to concisely define a transformation
between coordinate frames
 Define

 t, the translation vector between the origins of the two
frames

 R, a 3X3 rotation matrix from one frame to the next
 , a homogenous form of the state,

 Combine into a homogeneous transform

11

3D COORDINATE TRANSFORMS

1
x

x  
  
 



x

1 0 1 1

I I I B
I B B B

B
x R t x

T x
     

      
     



 I – Inertial
 B – Body
 K – Kinect

12

TURTLEBOT TRANSFORMS

X

Y

Z
I

B

K

B
KT

B
IT

K
IT

 E – Earth Fixed
 Q – Current

quadrotor pose
 C – Camera frame
 M – Model frame
 Md – Target fixed

frame
 Qd – Desired

quadrotor pose

 Quadrotor inertial
pose error equation:

13

QUADROTOR TRANSFORM – EXTREME CASE

() ()d

d d d

MQ E Q C M
Q Q C M

E

M QT t R T T T T t

 There are at least 3 ways to represent rotations
in 3D
 Euler angles

 Intuitive, easy to understand, sequence of rotations
 Have singularity known as “gimbal lock” where rotation

cannot be properly represented
 Quaternions

 Represents rotations as a 4 element unit quaternion
 Easy to update, no singularities
 Requires unit norm, not intuitive

 Rotation Matrix
 Complete, exact, unique, symmetric 3X3 matrix
 Also easy to update, no singularities
 Has to have a unit determinant, not intuitive

 Others include Rodriguez, modified Rodriguez, etc.

ROTATIONS IN 3D

14

 Given First Axes (xyz), rotate to Second Axes
(XYZ) through 3 successive rotations, using 3D
rotation matrix.
 Rotation 1: About z by alpha

 Rotation 2: About N by beta

 Rotation 3: About Z by gamma

 Known as 3-1-3 Euler Angles

15

EULER ANGLES

 Aero convention: 3-2-1 Euler Angles
 Yaw, Pitch, Roll:

 Rotation Matrices
 3 - Yaw

 2- Pitch

 1- Roll

16

EULER ANGLES

, ,  

cos sin 0
() sin cos 0

0 0 1
R

 
  

 
   
  

cos 0 sin
() 0 1 0

sin 0 cos
R

 


 

 
   
  

1 0 0
() 0 cos sin

0 sin cos
R   

 

 
   

  

 Rotation Matrix (often Direction Cosine Matrix
(DCM))
 All three rotations combined

 Rotate from inertial to body coordinates

 To rotate from body to inertial, inverse mapping
 Recall, inverse = transpose

17

EULER ANGLES

,1 ,2 ,3

cos cos cos sin sin
sin sin cos cos sin sin sin sin cos cos sin cos
cos sin cos sin sin cos sin sin sin cos cos cos

B
IR R R R  

    
           
           

 
     

   

 TI B
B IR R

 Angular rates measured in body frame (p,q,r)
 Euler angles are measured relative to multiple

intermediate coordinate frames (3-2-1),
 Euler rates used to update Euler angles in motion

 Not a rotation matrix
 Cannot simply transpose for inverse.

18

ANGULAR RATE ROTATIONS

1 0 0 0
0 0 cos sin
0 0 sin cos 0

1 0 0 cos 0 sin 0
0 cos sin 0 1 0 0
0 sin cos sin 0 cos

p
q
r


  
 

 
 
    

      
             
             

     
           

          






 Resulting transformations

19

ANGULAR RATE ROTATIONS

1 0 sin
0 cos cos sin
0 sin cos cos

p
q
r

 
   
   

     
         
         






1 sin tan cos tan
0 cos sin

sin cos0
cos cos

p
q
r

    
  
  

 

 
    
         
         






eR

eR

QUATERNIONS

 An alternative way of
representing rotations is
through quaternions
 Hamilton (1843) was looking

for a field of dimension 4
 Reals are a field of dimension 1,

complex are a field of dimension 2
 While walking with his wife in

Dublin, scribbled the rule of
quaternions on a bridge so he
would not forget it.

 Everything but commutative
multiplication works for
quaternions (almost a field)

2 2 2 1    i j k ijk

QUATERNIONS

 Quaternions are a 4-tuple, divided into a scalar
and a 3-vector
 Let

 Then a quaternion can be written
as

 Addition simply adds the elements

 
 
 

1 0 0

0 1 0

0 0 1







i

j

k

4

0 1 2 3(, , ,)q q q q q 

0 1 2 3 0(,)q q q q q q    i j k q

0 0 1 1 2 2 3 3() () () ()q p q p q p q p q p        i j k
21

QUATERNIONS

 Unit quaternions can be related to an angle
(and a vector), which enables them to represent
rotations

 Therefore, there must exist an angle
defined by a quaternion q, such that sinθ=||q|| and

 And we can express the unit quaternion and its conjugate as

2 2

0
|| || 1q  q 2 2cos sin 1  

(,]   

|| || sin
 
q qu
q

*

cos sin
cos sin

q
q

 
 

 
 

u
u

22

QUATERNION UPDATE EQUATIONS

 Similar to the Euler angle update, quaternions
can be updated directly from body rotation rates

 If you measure the body rotation rate and form a
quaternion version

 The quaternion update equation becomes

(0,)B B  ω

1
2 B

q q

23

 Matlab code to switch between representations now
included in code package
 Converts between Rotation Matrix, Quaternion, Euler

angles and Euler vector, angle representations

OUTPUT=SpinCalc(CONVERSION,INPUT,tol,ichk)

 Simple code to create 3D rotation matrices

rot.m rotates by an angle about one of 3
principle axes

 ROS uses primarily quaternions, but also has built in
conversion functions

Geometry/RotationMethods 24

CONVERSIONS – CODED FOR YOU

EXTRA SLIDES

25

QUATERNIONS

 Quaternions are a 4-tuple, divided into a scalar
and a 3-vector
 Multiplication by a constant

 The product of two quaternions is defined by
Hamilton’s rule

 Which implies

0 1 2 3cq cq cq cq cq   i j k

2 2 2 1    i j k ijk

  
  
  

ij k ji
jk i kj
ki j ik

QUATERNIONS

 To get the rule for multiplication, do it out
longhand and simplify

 Let , then

 In matrix form,

  0 1 2 3 0 1 2 3pq p p p p q q q q      i j k i j k

0 0(,), (,)p p q q p q

0 0 0 0r pq p q p q       p q q p p q

0 1 2 3 0

1 0 3 2 1

2 3 0 1 2

3 2 1 0 3

p p p p q
p p p p q

r pq
p p p p q
p p p p q

     
       

   
      

Scalar part, r0 Vector part, r

QUATERNIONS FOR ROTATIONS

 Theorem: The quaternion rotation operator
Rq(v) = qvq*

performs a rotation of vector v by 2θ about axis q.

v

qn
a

()qR n

2

n

u

QUATERNIONS FOR ROTATIONS

 So now we have a physical interpretation of the
quaternion as a combination of a rotation axis q
and a rotation angle 2θ

 We can write the rotation operator in matrix
form and extract a conversion to a rotation
matrix

2 2
0 1 1 2 0 3 1 3 0 2

2 2
1 2 0 3 0 2 2 3 0 1

2 2
1 3 0 2 2 3 0 1 0 3

2() 1 2 2 2 2
' 2 2 2() 1 2 2

2 2 2 2 2() 1

q q q q q q q q q q
q q q q q q q q q q
q q q q q q q q q q

R

    
      
     



v v

v

