ME 597: AUTONOMOUS MOBILE ROBOTICS
SECTION 2 — COORDINATE TRANSFORMS

Prof. Steven Waslander

OUTLINE

Coordinate Frames and Transforms
Rotation Matrices
Euler Angles
Quaternions

Homogeneous Transforms

COORDINATE FRAMES

Used to define environment, vehicle motion
Right-handed by convention

Inertial frame — fixed, usually relative to the earth

o GPS: Earth Centered Earth Fixed (ECEF), Latitude,
Longitude, Altitude (LLA), East North Up (ENU)
o Aeronautics: North East Down (NED)

Body/sensor frame — attached to vehicle/sensor,
useful for expressing motion/measurements

o Body origin at vehicle CG, sensor at optical center

e

i
|
E:Ill\

\n

lln ‘

W "l !:.

' Ilu ‘
i|‘

‘I|.
Y
\

N

i

<
A

l||i

i
\

f

| ! |‘I|
iy
|||i|| ':: |

{

!

N

COORDINATE FRAMES
2D Rigid Body Motion

For ground robots, two dimensional motion definition
often enough

o If robot has a heading, third axis is implicit

o Right hand rule defines direction of rotation

COORDINATE FRAMES

o0 Inertial Frame: X,,Y,
o Vehicle State: ¢&, =[x, y,6]

1

| L

COORDINATE FRAMES

Body Frame: X, Y,
Vehicle State: &, =10,0,0]

COORDINATE FRAMES

Body frame useful for understanding sensor
measurements, environment relative to vehicle

Bearing and range to an obstacle:

X = pCoSc

object,B

yobject,B — IOSln 04

ROTATION MATRICES

Conversion between Inertial
and Body coordinates is
done with a translation
vector and a rotation matrix

Rotate vectors using 2X2
rotation matrix

cos@d sind
R,Bw){ ! }
—sin@d cosé
Full transformation 1s
translation and then rotation
Py = Rf (9)1?1 + Oé
Pr= Ré(é’)pB + OIB

COORDINATE TRANSFORMATION

To map the location of the obstacle in a local
map, need to transform the current measurement
into the map reference frame:

ﬂ Pr = Rzlz (9)]93 + OIB
0 N 1 0 B
VI VB VI

[05 -0866] 2 N 4
10866 5 ||25] |1
—1.165]| [4

= +

| 2.982 1

[2.835

 3.982

ROTATION MATRICES

In fact, the rotation can also "
be seen as a 3D rotation, '
about the Z; axis.
[cos@® sin@ 0]
R(6)=| —sin@ cosd O 5
0 0 1]

Can be generalized to
arbitrary rotations about any
axis (Euler angles)

Rotation matrices are
orthogonal

R(6) = R"(6)

<V

3D COORDINATE TRANSFORMS

Often handy to concisely define a transformation
between coordinate frames

Define

t, the translation vector between the origins of the two
frames

R, a 3X3 rotation matrix from one frame to the next
X, a homogenous form of the state,

il

Combine into a homogeneous transform

x' TR = R, t,| x°
1 0 1] 1

TURTLEBOT TRANSFORMS

I — Inertial
B — Body
K — Kinect

QUADROTOR TRANSFORM — EXTREME CASE

E — Earth Fixed

R — Current
quadrotor pose

C — Camera frame
M — Model frame

M, — Target fixed
frame

@, — Desired
quadrotor pose

Quadrotor inertial)
pose error equation:

o TE Ty Ty Ty (1)

ctmtm,

ROTATIONS IN 3D

There are at least 3 ways to represent rotations
1 3D
Euler angles

Intuitive, easy to understand, sequence of rotations

Have singularity known as “gimbal lock” where rotation
cannot be properly represented

Quaternions
Represents rotations as a 4 element unit quaternion
Easy to update, no singularities
Requires unit norm, not intuitive

Rotation Matrix
Complete, exact, unique, symmetric 3X3 matrix
Also easy to update, no singularities

Has to have a unit determinant, not intuitive

Others include Rodriguez, modified Rodriguez, etc.

EULER ANGLES

Given First Axes (xyz), rotate to Second Axes
(XYZ) through 3 successive rotations, using 3D
rotation matrix.

Rotation 1: About z by alpha ‘

Rotation 2: About N by beta

Rotation 3: About Z by gamma B

Known as 3-1-3 Euler Angles " ,’

EULER ANGLES N »
o Aero convention: 3-2-1 Euler Angles
» Yaw, Pitch, Roll: v,0,¢ Pitch

» Rotation Matrices cosy siny 0
03-Yaw R(y) = —smz// cosy/ O}
. (cosd 0 -—sind
| sind 0 cosd
o 1- Roll
R(¢)— cos¢ sm¢
|0 —sing cos¢

EULER ANGLES

Rotation Matrix (often Direction Cosine Matrix
(DCM))

All three rotations combined

cos @ cosy cosésiny —siné
R’ =R,,R,,R, ;s =|singsin@cosy —cosgsiny singsingsiny +cosgcosy singcosd
cosgsindcosy +singsiny cosgsingsiny —sing@cosy CoS¢Ccos

Rotate from inertial to body coordinates

To rotate from body to inertial, inverse mapping
Recall, inverse = transpose

Ry =(RF)

ANGULAR RATE ROTATIONS

Angular rates measured in body frame (p,q,r)

Euler angles are measured relative to multiple
intermediate coordinate frames (3-2-1),

Euler rates used to update Euler angles in motion
Not a rotation matrix
Cannot simply transpose for inverse.

4] [1 0O 0 [0
g|=|0|+|0 cos¢g singl| &
O

1

0 —sing cosg || 0
0 0 |[cos@ 0 -sin@d][0
+10 cos¢g sing|| 0 1 0 0

|0 —sing cosg | sind 0 cosé ||y

ANGULAR RATE ROTATIONS

Resulting transformations

pl [1 O —sing | ¢
R, qg|=/0 cos¢ cos@sing | 6
' r] [0 —sing cos&cosg | y |

- (4] |1 singtan® cosgtand |[p
R, 0|=|0 cos¢g —sing
12 0 sing cos¢ ||

cosé@ cosd

QUATERNIONS

o An alternative way of
representing rotations is
through quaternions

» Hamilton (1843) was looking
for a field of dimension 4

o Reals are a field of dimension 1,
complex are a field of dimension 2

o While walking with his wife in
Dublin, scribbled the rule of
quaternions on a bridge so he
would not forget it.

i'=j =k =ijk=-1

S

. . TSR 1 43559 a2
o Everything but commutative k.

A nnd
multiplication works for b
quaternions (almost a field)

QUATERNIONS

Quaternions are a 4-tuple, divided into a scalar
and a 3-vector

Let i=[1 0 O]

j=[0 1 0]

k=[0 0 1]

Then a quaternion ¢=(4,.9..9,.¢,)€R* can be written
as

q=q,+qi+qj+qk=(q,,q)

Addition simply adds the elements

q+p=(q,+p,)+(q+p)i+(q,+p,)i+(q,+p)k

QUATERNIONS

Unit quaternions can be related to an angle
(and a vector), which enables them to represent
rotations
g+|qlf[=1 cos’ @ +sin"d =1
Therefore, there must exist an angle @ e (-,]
defined by a quaternion ¢, such that sind=||q|| and

uo4 __d
lqll sin6

And we can express the unit quaternion and its conjugate as

g =C0Sfd+usiné
g =Cc0sd—usiné

QUATERNION UPDATE EQUATIONS

Similar to the Euler angle update, quaternions
can be updated directly from body rotation rates

If you measure the body rotation rate and form a
quaternion version

Wy = (O’ O‘)B)

The quaternion update equation becomes

1
q=-40,

CONVERSIONS — CODED FOR YOU

Matlab code to switch between representations now
included 1in code package

Converts between Rotation Matrix, Quaternion, Euler
angles and Euler vector, angle representations

OUTPUT=SpinCalc(CONVERSION, INPUT, tol , ichk)
Simple code to create 3D rotation matrices

rot.m rotates by an angle about one of 3
principle axes

ROS uses primarily quaternions, but also has built in
conversion functions

Geometry/RotationMethods

EXTRA SLIDES

QUATERNIONS

Quaternions are a 4-tuple, divided into a scalar
and a 3-vector

Multiplication by a constant
cq =cq, +cqi+cqj+cgk

The product of two quaternions is defined by
Hamilton’s rule
i'=)=k"=ijk=-1

Which 1implies

QUATERNIONS

To get the rule for multiplication, do it out
longhand and simplify

pq=(p,+pi+pj+pk)(q+qi+tqj+qk)
Let p=(p,.p)q9=(9,9) ,then
r=pq=pgq,—p-q+p4+q9p+pxq

Scalar part, r, Vector part, r

In matrix form,

P =P P, —P:|| 49
P P P P, |4
P, P, P, P |4
P, —P, D P, |9]

QUATERNIONS FOR ROTATIONS

Theorem: The quaternion rotation operator

R (v) = qug*
performs a rotation of vector v by 20 about axis (.

QUATERNIONS FOR ROTATIONS

So now we have a physical interpretation of the
quaternion as a combination of a rotation axis q
and a rotation angle 20

We can write the rotation operator in matrix
form and extract a conversion to a rotation
matrix

200; +a0) -1 29,9,-24,q; 20,95 +2404;,
V'=12q,0,+2q49; 2(q0 +q5) =1 2G,9; =249, |V
_2%% —2q9,9, 249,95+ 24,4, Z(QS + qg) _1_
= Rv

