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 Coordinate Frames and Transforms
 Rotation Matrices
 Euler Angles
 Quaternions
 Homogeneous Transforms
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OUTLINE



 Used to define environment, vehicle motion
 Right-handed by convention

 Inertial frame – fixed, usually relative to the earth
 GPS: Earth Centered Earth Fixed (ECEF), Latitude, 

Longitude, Altitude (LLA), East North Up (ENU)
 Aeronautics: North East Down (NED)

 Body/sensor frame – attached to vehicle/sensor, 
useful for expressing motion/measurements
 Body origin at vehicle CG, sensor at optical center
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 2D Rigid Body Motion
 For ground robots, two dimensional motion definition 

often enough
 If robot has a heading, third axis is implicit
 Right hand rule defines direction of rotation
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 Inertial Frame: 
 Vehicle State:
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 Body Frame: 
 Vehicle State: 
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 Body frame useful for understanding sensor 
measurements, environment relative to vehicle
 Bearing and range to an obstacle:
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BY
BX

 Conversion between Inertial 
and Body coordinates is 
done with a translation 
vector and a rotation matrix
 Rotate vectors using 2X2 

rotation matrix

 Full transformation is 
translation and then rotation 
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 To map the location of the obstacle in a local 
map, need to transform the current measurement 
into the map reference frame:
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 In fact, the rotation can also 
be seen as a 3D rotation, 
about the ZI axis.

 Can be generalized to 
arbitrary rotations about any 
axis (Euler angles)

 Rotation matrices are 
orthogonal
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 Often handy to concisely define a transformation 
between coordinate frames
 Define

 t, the translation vector between the origins of the two 
frames

 R, a 3X3 rotation matrix from one frame to the next
 ,  a homogenous form of the state,

 Combine into a homogeneous transform
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 I – Inertial 
 B – Body
 K – Kinect
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 E – Earth Fixed
 Q – Current 

quadrotor  pose
 C – Camera frame
 M – Model frame 
 Md – Target fixed 

frame
 Qd – Desired 

quadrotor pose

 Quadrotor  inertial 
pose error equation:
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 There are at least 3 ways to represent rotations 
in 3D
 Euler angles

 Intuitive, easy to understand, sequence of rotations
 Have singularity known as “gimbal lock” where rotation 

cannot be properly represented
 Quaternions

 Represents rotations as a 4 element unit quaternion
 Easy to update, no singularities
 Requires unit norm, not intuitive

 Rotation Matrix
 Complete, exact, unique, symmetric 3X3 matrix
 Also easy to update, no singularities
 Has to have a unit determinant, not intuitive

 Others include Rodriguez, modified Rodriguez, etc.

ROTATIONS IN 3D
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 Given First Axes (xyz), rotate to Second Axes 
(XYZ) through 3 successive rotations, using 3D 
rotation matrix.
 Rotation 1: About z by alpha

 Rotation 2: About N by beta

 Rotation 3: About Z by gamma

 Known as 3-1-3 Euler Angles
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EULER ANGLES



 Aero convention: 3-2-1 Euler Angles
 Yaw, Pitch, Roll: 

 Rotation Matrices
 3 - Yaw

 2- Pitch

 1- Roll
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 Rotation Matrix ( often Direction Cosine Matrix 
(DCM))
 All three rotations combined

 Rotate from inertial to body coordinates

 To rotate from body to inertial, inverse mapping
 Recall, inverse = transpose
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 Angular rates measured in body frame (p,q,r)
 Euler angles are measured relative to multiple 

intermediate coordinate frames (3-2-1), 
 Euler rates used to update Euler angles in motion

 Not a rotation matrix 
 Cannot simply transpose for inverse.
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 Resulting transformations
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QUATERNIONS

 An alternative way of 
representing rotations is 
through quaternions
 Hamilton (1843) was looking 

for a field of dimension 4 
 Reals are a field of dimension 1, 

complex are a field of dimension 2
 While walking with his wife in 

Dublin, scribbled the rule of 
quaternions on a bridge so he 
would not forget it.

 Everything but commutative 
multiplication works for 
quaternions (almost a field)

2 2 2 1    i j k ijk



QUATERNIONS

 Quaternions are a 4-tuple, divided into a scalar 
and a 3-vector
 Let

 Then a quaternion                                  can be written 
as

 Addition simply adds the elements
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QUATERNIONS

 Unit quaternions can be related to an angle 
(and a vector), which enables them to represent 
rotations

 Therefore, there must exist an angle                        
defined by a quaternion q, such that sinθ=||q|| and 

 And we can express the unit quaternion and its conjugate as 
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QUATERNION UPDATE EQUATIONS

 Similar to the Euler angle update, quaternions 
can be updated directly from body rotation rates

 If you measure the body rotation rate and form a 
quaternion version

 The quaternion update equation becomes

(0, )B B  ω

1
2 B
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 Matlab code to switch between representations now 
included in code package
 Converts between Rotation Matrix, Quaternion, Euler 

angles and Euler vector, angle representations

OUTPUT=SpinCalc(CONVERSION,INPUT,tol,ichk)

 Simple code to create 3D rotation matrices

rot.m rotates by an angle about one of 3 
principle axes

 ROS uses primarily quaternions, but also has built in 
conversion functions

Geometry/RotationMethods 24

CONVERSIONS – CODED FOR YOU



EXTRA SLIDES
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QUATERNIONS

 Quaternions are a 4-tuple, divided into a scalar 
and a 3-vector
 Multiplication by a constant

 The product of two quaternions is defined by 
Hamilton’s rule

 Which implies
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QUATERNIONS

 To get the rule for multiplication, do it out 
longhand and simplify

 Let , then

 In matrix form, 
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QUATERNIONS FOR ROTATIONS

 Theorem: The quaternion rotation operator 
Rq(v) = qvq* 

performs a rotation of vector v by 2θ about axis q.
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QUATERNIONS FOR ROTATIONS

 So now we have a physical interpretation of the 
quaternion as a combination of a rotation axis q 
and a rotation angle 2θ

 We can write the rotation operator in matrix 
form and extract a conversion to a rotation 
matrix
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