
ME 597: AUTONOMOUS MOBILE ROBOTICS
REVIEW LECTURE

Prof.  Steven Waslander



 Length
 3 questions similar to example problems
 Total worktime: hopefully <16 hours

 Depends mostly on programming skill
 Total available 24 hours

 Schedule
 Exam posted to Learn at 9:00 AM on Saturday, 

December 13th, 2014
 Submit one PDF file and one code zip folder 

electronically into exam dropbox by Sunday 
December 14th, 2014 at 9:00 AM

 Questions: Email me directly at 
stevenw@uwaterloo.ca.  Note I’ll be asleep 12-
6AM 2

EXAM FORMAT



LIKELY EXAM TOPICS

3

 Probability basics
 Coordinate systems
 Motion models
 Linear Quadratic 

Regulator and Tracking
 Nonlinear vehicle steering 

control
 Measurement and inverse 

measurement models
 Kalman Filter 
 Extended Kalman Filter
 Particle Filter
 EKF Localization
 Particle Localization
 Occupancy grid mapping
 EKF SLAM

 FastSLAM 1.0
 RANSAC
 Scan Registration
 Potential fields
 Trajectory Rollout
 Wavefront
 Dijkstra, A* algorithm
 Visibility graphs
 Probabilistic Roadmaps
 Rapidly Expanding 

Random Trees
 Nonlinear programming*

 Occupancy Grid SLAM*
 GraphSLAM*

* Possible, not likely.



UNLIKELY EXAM TOPICS

4

 Optimization Theory
 Optimization 

Algorithms
 Dynamic 

programming
 Aerial, legged or 

tracked vehicles
 Feedback 

linearization, 
Backstepping, Sliding 
mode control

 Contact sensors
 Vision

 Unscented Kalman
Filters

 Bug algorithms
 Generalized Voronoi

Decomposition
 Linear Programming
 Mixed Integer Linear 

Program



FINAL EXAM
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 No communication 
with other human 
beings during exam

 No communication 
with other human 
beings during exam

 No communication 
with other human 
beings during exam

 No communication 
with other human 
beings during exam

 No communication 
with other human 
beings during exam

 No communication 
with other human 
beings during exam



 3. A wheeled robot of neglible length is moving along 
undulating terrain in a straight line, as defined below. The 
current vehicle position is known exactly thanks to a very 
accurate GPS sensor, its orientation due to a 2-axis 
accelerometer measuring the ground reaction force, Fgr. The robot is controlled to maintain a constant horizontal 
velocity of 0.5 m/s regardless of the slope of the terrain. 
Equipped with a 5 Hz laser scanner pointing forward and 
down along the direction of motion, your job is to create a 
map of the terrain elevation as the robot moves.

 6

REVIEW QUESTIONS



 a) [5] Define the states of the vehicle and the 
terrain and define the described motion in order 
to simulate it.  Define a two axis occupancy grid 
(x,z) with 0.1m grid spacing.
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REVIEW QUESTIONS



 a) [5] Define the states of the vehicle and the 
terrain and define the described motion in order 
to simulate it.  Define a two axis occupancy grid 
(x,z) with 0.1m grid spacing.

 Note: Use clear, consistent notation, work out 
details on paper before coding.
 Don’t try and see (it will take much longer to debug 

than to get it right the first time).

8

REVIEW QUESTIONS



 Forces don’t matter, this is a pure mapping 
problem

 Redefine Ɵ relative to forward axis

 5 Hz update rate
 Grid [0,10] X [0,10] with 0.1 m cell size is 100 X 100
 Assume X moves one grid to the right each timestep and 

takes new measurements. 9
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 Simulation of robot motion can proceed without a 
real motion model, since its state is assumed to 
be known exactly from GPS and tilt sensor. 
 z is 1 meter above ground. 
 Ɵ is calculated based on local slope approximation (or 

derivative).
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 b) [10] Create an inverse measurement model 
that receives 16 measurements evenly spaced 
between Ɵmin = 60° and Ɵmax = 15° down from the 
forward horizontal with rmax = 5 m and returns the 
probability of a grid being occupied by the 
ground.  The height of the scanner is 1m above 
the ground.  For the probability of ground, use 
0.7, and the probability of not ground, use 0.3.  Is 
it possible to assume the ground is solid beyond a 
valid range measurement, why or why not?

11
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 Measurement angles, with spacing of 3 degrees ((60-
15)/15), 16 measurements total.
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 Inverse Measurement Model
 Get range and bearing to each cell

 Find relevant range measurement for that cell
 Closest bearing of a measurement
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 What’s different?
 Only if max range is returned do we have no info 

beyond a range measurement

 if

 else if 

 else if 

14

REVIEW QUESTIONS

max or | | / 2i s i s
kr r     

max and ( ) / 2s s i s
k kr r r r   

i s
kr r

( | ) 0.5i
tp m y 

( | ) 0.7i
tp m y 

( | ) 0.3i
tp m y 



 Example Inverse Measurement Model
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 Is it possible to assume solid ground beyond valid 
range measurements?
 Not absolutely, but it is a reasonable assumption if 

we leave some uncertainty in that region
 As defined above, we have assumed that ground is 

equally probable beyond a valid range measurement 
as at the valid range measurement.

 We could also adapt this to have diminishing 
certainty with increasing distance beyond 
measurement range 
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 Example Inverse Measurement Model
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 Equally valid to use Bresenham version of sensor 
model
 Adapt update regions along line, and proceed to end 

of map
 if

 if                    and

or
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 c) [10] Develop a simulation with the following terrain 
profile, where h(x) is the height of the ground at position x
in [0,10].

h(x) = 10(sin(x+1) + sin(x/2+.3) + sin(x/3+.5))

Simulate for a 20 second journey at a constant horizontal 
velocity of 0.5 m/s, with the scanner returning 
measurement sets at 5 Hz.
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 So now we use our full mapping simulation to 
generate the results.  Code is available, but  
changes were needed to
 Getranges(), to account for 0.1m cell spacing
 Inversescanner(), to account for changes in scanner 

model when measuring the ground
 Mapping.m, to change vehicle motion and sensor 

height, environment map, and x, z axis configuration.
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Modify getranges( ) to take cell size alpha (could also convert to 
Bresenham
…    
for i=1:length(meas_phi) for j=1:round(rmax/alpha)

% Determine the x,z range to the cell
xi = x+alpha*j*cos(th+meas_phi(i));
zi = z+alpha*j*sin(th+meas_phi(i));
% Determine cell coordinates
ix = round(xi/alpha);
iz = round(zi/alpha);

% If not in the map, set measurement there and stop going further 
% If not in the map, set measurement invalid and stop going further 
if (ix<=1||ix>=M||iz<=1||iz>=N)

meas_r(i) = rmax; % alpha*j;
break;

% If in the map but hitting an obstacle, set measurement range and
% stop going further
elseif (map(ix,iz))

meas_r(i) = alpha*j;
break;

end
end
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Change inversescanner() per model
for i = 1:M

for j = 1:N
% Find range and bearing to the current cell
r = sqrt((i*alpha-x)^2+(j*alpha-z)^2);
phi = mod(atan2(j*alpha-z,i*alpha-x)-theta,2*pi);

% Find the applicable range measurement 
[meas_cur,k] = min(abs(phi-meas_phi));
phi_s(i,j) = phi;

% If behind out of range measurement, or outside of field
% of view, no new information is available
if ((meas_r(k) == rmax) && (r - rmax >= -alpha/2)) || (abs(phi-

meas_phi(k))>beta/2)
m(i,j) = 0.5;

% If the range measurement was before this cell, likely to be an object
elseif ((r - meas_r(k) >= -alpha/2))

m(i,j) = 0.7 - 0.2*(1-exp(-(r-meas_r(k))));
% If the cell is in front of the range measurement, likely to be empty
else 

m(i,j) = 0.3;
end

end
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% Robot motion defined by terrain

x(:,t) = [xmap(t); zmap(t)+1; thmap(t)];

% Generate a measurement data set
meas_r = getranges(map,x(:,t),meas_phi,rmax,alpha);

%% Map update
% Get inverse measurement model
invmod = inversescanner(N,N,x(1,t),x(2,t),x(3,t),meas_phi,meas_r, 

rmax,alpha,beta);
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 Didn’t ask for very specific graphs, will do so on 
the final.
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 And with the decay in probability beyond range 
measurement.
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 Finally, this whole exercise indicates some clear 
benefits to a different laser configuration
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 Can also easily test the assumption that laser is 
an ever expanding beam 
 Reduce to 5 measurements, but maintain 3 degree 

cone
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 In this problem, we will develop a reactive motion planner for 2D motion of ground 
vehicle for navigation in a gallery. The robot is required to lead a tour through the 
gallery and arrive at the various points of interest, while avoiding sculptures, chairs, 
walls etc. en route. The environment is most easily represented as an occupancy grid, 
which is defined by the file ”gallery.m”, available on ACE and is depicted in Figure 2. 
The robot is the four swedish wheel variety as depicted in Figure 1, and so can be 
described with linear dynamics (note: speakers are located on all sides of the robot 
guide, so that heading is irrelevant and can be maintained at a constant value).

 a) Define a motion model for the robot with four 90 swedish wheels arranged as in 
Figure 1. 
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 Again, clearly define variables, coordinates and 
model

29

REVIEW QUESTIONS



 b) Develop a potential field planner by defining 
attractive potentials for each of the targets locations 
on the tour, and repulsive potentials for all of the 
obstacles in the environment. Should all the 
attractive potentials be active at every point in time? 
How would you handle the sequential nature of the 
tour? How would you translate the steepest descent 
direction of the potential into control commands for 
the motion model defined in part a)? What happens if 
the robot gets stuck in a local minimum?

 Note: Solution outlined below, be sure to write out 
equations used for exam. 30
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31

REVIEW QUESTIONS

 The map in this question is harder than the ones 
presented in class, with nonconvex obstacles and 
lots of difficult passages
 Likely a lot of local minima

 The active potentials should only be active one at 
a time
 Add a logic layer to handle the sequence of waypoints 

to visit.
 While not at final point

 If within 1m of current point
 Set attractive potential to next point

 End
 End



 The repulsive potentials will be as in class, with 
some exceptions
 Since the boundary is complex, it can be converted to 

a set of polygon obstacles
 Each interior obstacle can be converted into discrete 

1X1m obstacle chunks to facilitate shortest distance 
calculations on irregular boundaries.

 To extract a motion command from the potential 
field, just take gradient components in x and y as 
desired accelerations

32
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 c) Simulate a trajectory through the environment 
based on the potential field method. Be sure to pause 
for 5 seconds at each target location. Is the vehicle 
able to exactly achieve all of the target locations? 
Present a plot of the vehicle trajectory through the 
environment, and of the potential field that results for 
the first target location and obstacles.
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 Take potential field code
 Modify attractive potential selection
 Discretize obstacles
 Modify collision checks for discrete square obstacles

34
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 Potential Field for first leg of journey to waypoint 
2.
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36

REVIEW QUESTIONS

 Full trajectory – with limitations (added a timeout)



 Repeat the above problem, but use the wavefront
algorithm instead of the potential field method.

 a) Define the algorithm used to create a wavefront
emanating from the current target location.

 b) Given a wavefront based potential field, define the 
algorithm used to select a trajectory to the current 
target location.

 c) Implement the algorithm for the gallery and target 
locations defined in the file ”gallery.m” available on 
LEARN. Present the trajectory followed for the entire 
tour of the gallery, and the wavefront potential 
generated for the first target location. 37

REVIEW PROBLEMS



 Solution 
 Take wavefront code and apply in place of potential 

field

38
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Particle Filters:
A surveillance aircraft is travelling at a fixed altitude and 
airspeed, but is affected by unknown constant winds. There are 
four visual landmarks the aircraft can use to localize its position, 
and it receives only bearing information from each of the four 
landmarks located at {(−10, 0), (10, 0), (10, 20), (−10, 20)}. The 
aircraft motion can be modelled identically to a two wheeled 
robot, with the exception of sideslip due to wind. 

39
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Let the state vector be

where X, Y are the horizontal position of the aircraft, θ 
is its heading and vx,w , vy,w are the horizontal 
components of the wind velocity. 
The kinematic model of motion is,

40
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 a) [5] Define a measurement model for bearings 
only measurement of all four landmarks.
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 b) [5] Define motion disturbances and 
measurement noise for both models.
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 c) [15] Develop a particle filter for aircraft 
localization and wind speed estimation. Present 
all necessary variables and equations, and define 
each step in the algorithm.

 No changes, direct implementation of existing 
particle filter.  
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 d) [15] Implement the particle filter with in 
simulation with dt = 0.1 for an aircraft starting 
at the origin at altitude 25 m, with zero heading, 
with constant inputs of v = 5m/s, ω = 0.3rad/s, 
and with a constant windspeed of vw= (−0.5, 2). 
Generate the following plots 
 i) the true state, the measurements and the particle 

set (only at 1 second intervals for the particle set) 
 ii) the estimate of the wind velocity over time.
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 Code differences required
 New motion model with five states

 Initialization of simulation
 Initialization of particles
 Disturbance covariance
 Motion update with wind
 Particle prediction update

 New measurement model with only bearing
 Initialization of measurements
 Noise covariance
 Measurement simulation
 Weighting – normpdf

 Clean up plotting to generate required output
45
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 Recall the Particle Filter Algorithm (simplified)
1. For each particle in 

1. Propagate sample forward using motion model (sampling) 

2. Calculate weight                                                (importance)

3. Store in interim particle set

2. For j = 1 to D
1. Draw index i with probability                           (resampling)

1. Add to final particle set
46
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 Particle filter code

%% Particle filter estimation
for dd=1:D % for each particle

e = RE*sqrt(Re)*randn(n,1); % Generate motion disturbance
Xp(:,dd) = [X(1,dd)+(u(1,t)*cos(X(3,dd))+X(4,dd))*dt; 

X(2,dd)+(u(1,t)*sin(X(3,dd))+X(5,dd))*dt;
X(3,dd)+u(2,t)*dt;
X(4,dd);
X(5,dd)] + e;  % propagate dynamics

% Calculate expected measurements and weights
hXp = [atan2(map(:,2)-Xp(2,dd),map(:,1)-Xp(1,dd))-Xp(3,dd)] + d;
w(dd) = mvnpdf(y(:,t),hXp,Qm); 

end
W = cumsum(w); % Switch to cumulative distribution
for dd=1:D % Perform importance sampling

seed = max(W)*rand(1);  % Draw sample uniformly
X(:,dd) = Xp(:,find(W>seed,1)); % Keep corresponding particle 

end
muParticle = mean(X'); % Calculate mean if needed
SParticle = var(X'); 47
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 e) [5] How many particles did you choose to use 
in your particle filter implementation and why? 
What are the advantages and drawbacks of using 
more or less particles?

 I used 300 particles, 100 caused deprivation 
issues that crash the code when all weights are 
zero, and 1000 took too long.
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 Nonlinear programming
Collision avoidance for aircraft using nonlinear programming.  
In this problem, your task will be to formulate an optimal path planner 
that resolves conflicts between multiple aircraft trajectories in the 2D 
plane using a receding horizon nonlinear program.  We will assume that 
all vehicle position information is accurate and is known centrally, 
avoiding the need to perform vehicle state estimation or to coordinate 
inter-vehicle communication.  The system of interest will involve n
vehicles with trajectories defined in discrete time steps of 10 seconds, as 
follows, 

where the  superscript d,i denotes the desired trajectory for vehicle i, 
and the subscript 1,t denotes the state variable 1 at time t.  The 
trajectory is define for T timesteps into the future, and can be extended 
indefinitely in a straight line at constant speed if necessary.
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The receding horizon to be used will be denoted . The vehicles 
must maintain a minimum separation of  km.  The aircraft 
have minimum and maximum speed requirements of               
and maximum turn rates of 

a) Define a motion model for the aircraft, using the standard 
2D two-wheeled robot model, and include additive Gaussian 
disturbances for simulation purposes only, with covariance 
values of 

Standard two wheel model, from motion model slides
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b) Define all of the equality and inequality constraints 
that result from the motion model (ignoring 
disturbances), the collision avoidance constraints and 
input bounds for a receding horizon length .
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c) Define a cost function that penalizes quadratic 
deviation from the desired trajectory at each 
timestep. Define a separate cost that penalizes the 
turn rate quadratically and combine the two 
linearly with weighting factors for the first term 
and for the second.
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d) Formulate the full nonlinear program for a single 
time interval, then define a receding horizon algorithm 
that solves this program at each time step. Explain how 
the nonlinear program is modified at each successive 
time step.
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e) Implement the single stage nonlinear program for the 
following problem parameters.

The trajectories are a result of the vehicles flying at 100 
m/s with constant heading, traveling 1 km every time 
step. Provide a plot of the desired and optimal 
trajectories for both vehicles. 56
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 To code up part e), the following steps are needed.
 Grab a copy of the receding horizon control code, along with the cost and 

constraint functions from the Nonlinear Programming example.  Run it to 
make sure it works.

 In the main nonlinear programming file, rewrite the desired trajectories, 
and add a variable for the number of vehicles.

 Remove anything to do with obstacles. There are none in this problem.
 Redefine the lower and upper bounds, and make sure to define a consistent 

optimization vector (x = [x1 u1, x2 u2,…], where each variable runs 
through each state or input, then through each timestep, then through 
each vehicle).

 Modify the initial feasible solution
 Change the way the dynamics are propagated after the optimization is 

complete
 Rename the results properly for plotting.
 In the cost function file, redefine the cost function per the required form in 

part c).  Make sure the necessary global variables are declared here and in 
the main file.

 In the constraint function file, define the dynamics for all vehicles
 Also in the constraint function file, add in the collision avoidance 

constraints between each pair of vehicles

 You should now be able to run your code for the collision avoidance 
problem.  Some debugging of constraints and costs and lower and 
upper bounds may be required.  Check each one as you go along.
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 This is the hard part of this question, putting all of 
the constraints in the right form.  There are many 
matrices to create, and they must all be done over all 
time steps.  Use variable bounds where you can, and 
the rest you must define as equality and inequality 
constraints.  Note that nonlinear constraints must all 
be coded in the constraints function.
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Full optimization vector for M vehicles and T timesteps

Need problem in the form 
X = fmincon(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON)



% Linear Inequality Constraints (none)

A = [];

B = [];

% Linear Equality Constraints (the initial positions of the vehicles)

Aeq = zeros(nx*nv,NT);

for i = 1:nv

% Row index increments by nx for each new vehicle,

% Column index increments n to select correct values of optimization

% vector

Aeq((i-1)*nx+1:i*nx, (i-1)*n +1:(i-1)*n+nx) = eye(nx); 

% Rows of Beq match rows of Aeq

Beq((i-1)*nx+1:i*nx) = p0(:,i);

end

% State and input bounds, (if no bounds are given, still a good idea to

% include them but set them outside the problem scope).

LB = -500*ones(NT,1);  % Lower bounds on all variables

LB(4:n:end,1) = 0.050; % Lower bound on velocity (in km/s)

LB(5:n:end,1) = -0.03; % Lower bound on turn rate (in rad/s)

UB = 500*ones(NT,1);  % Upper bounds on all variables

UB(4:n:end,1) = 0.150; % Upper bound on velocity (in km/s)

UB(5:n:end,1) = 0.03; % Upper bound on turn rate (in rad/s)
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% Dynamics, nonlinear equality constraints, nv vehicles times nx states
% times Tr periods (from 0 to 1, 1 to 2,... Tr to Tr+1)

Ceq = zeros(nv*nx*Tr,1);
k = 1; % Increment constraint evaluations
for t = 1:Tr

for i = 1:nv
xprev = x(N*(t-1)+n*(i-1)+1:N*(t-1)+n*i); % Previous state and inputs
xcur = x(N*(t)+n*(i-1)+1:N*(t)+n*i); % Current state and inputs
% Dynamic constraints on the three states
Ceq(k:k+2) = xcur(1:3)-xprev(1:3)-dt*[cos(xprev(3))*xprev(4); 

sin(xprev(3))*xprev(4);
xprev(5)];

k = k+3;
end

end
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% Collision Avoidance inequality constraints
% There are nv(nv-1)/2 pairs of vehicles and Tr time steps to
% evaluate (do not include the initial positions, as they are 
% already fixed).

C = zeros(nv*(nv-1)/2*Tr,1);
k = 1; % Increment constraint evaluations
for t = 2:Tr+1 % For each time step after initial

for i = 1:nv % For each vehicle i
for j = i+1:nv % For each other vehicle j greater than i

xcuri = x(N*(t-1)+n*(i-1)+1:N*(t-1)+n*(i-1)+2); % Position i
xcurj = x(N*(t-1)+n*(j-1)+1:N*(t-1)+n*(j-1)+2); % Position j
C(k) = ds - norm(xcuri-xcurj); % min distance constraint
k = k +1;

end
end

end
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%% Cost Function
f = 0;
for t = 2:Tr+1 % For each timestep after the initial

for i = 1:nv % For each vehicle

% current vehicle state and inputs
xcur = x(N*(t-1)+n*(i-1)+1:N*(t-1)+n*(i-1)+n); 

% Position error cost, quadratic distance from desired position
f = f + beta*((xd(1,t-1,i) - xcur(1))^2+ (xd(2,t-1,i)- xcur(2))^2);

% Turn rate control input cost, quadratic sum of turn rate inputs
f = f + (1-beta)*xcur(5)^2;

end
end
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 Running the optimization
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% Solve nonlinear program
options = optimset('algorithm', 'interior-point','maxfunevals',50000); 

% Limit how long your optimization can run for
tic; % used to time the optimization, starts the timer

% The actual optimization call should not change if everything is
% defined correctly above

[X,FVAL,EXITFLAG,OUTPUT,LAMBDA] = fmincon(@(x), cost(x), x0, A, B, 
Aeq, Beq, LB, UB, @(x) constraints(x), options);

toc; % returns the elapsed time



f) Demonstrate the full receding horizon algorithm with 3 vehicles, for a 
receding horizon  Tr = 5 time steps, for the first 5 time steps of a full 
simulation of T = 15. Select any configuration of straight line trajectories 
you wish.  Provide the desired trajectories and the optimal solution at 
each timestep for all vehicles. 

 This involves modifying the code in two ways, and hopefully you 
coded the first changes in such a way that these modifications are 
easy and correct.  
 First, increase the number of timestep to more than 1.  
 Next, make sure that all of the matrices and nonlinear cost and constraint 

equations are being defined properly.  If you are happy with all the 
changes, run the expanded problem for one time step and make sure the 
solutions make sense.  

 Then update the initial conditions and extend the feasible solution and 
create the receding horizon control we are interested in

 If you coded everything correctly in the previous example, this should 
now run the code for multiple time step, correctly updating  the initial 
position of the vehicles after each optimization.  Check that the 
solutions you get make sense and generate the necessary trajectories.
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g) What are the run times for a single stage optimization with 
2 vehicles and T = 3,4,5? Be sure to have the collision 
avoidance constraint be active during the calculation window.  
How many optimization variables are in each of the 
problems?  What is the theoretical growth in computational 
complexity for nonlinear programs and how do your 
simulation results compare? Plot or tabulate the results.
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T Computation Time 
(5 timesteps)

3 0.56
4 1.10
5 1.67



 Random Sample Consensus (RANSAC)
 Given a set of measurements, some of which are 

wrong, find the good ones
 Can be done by looking at agreement between sets of 

measurements
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 Random Sample Consensus (RANSAC)
 RANSAC picks a subset of measurements: seed
 Then solves for robot pose
 Then finds inlier set: those measurements that agree 

with pose
 Repeat and keep largest inlier set to compute 

solution
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 RANSAC Summary
 While not out of time

 Pick a small subset of measurement correspondences

 Perform temporary measurement update with this subset

 Find all features that agree with current estimate to within 
a fixed threshold (identify inlier set)

 Select largest inlier set, reject all outliers

 Recompute solution using the inlier set
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 RANSAC Example – EKF SLAM
 EKF SLAM with more feature

 On average about 8 per timestep
 Two of the measurements are selected and their 

indices are swapped
 Measurements to feature i attributed to feature j

 RANSAC uses EKF SLAM measurement update with 
only a single feature measurement
 Generate new state hypothesis
 Create inlier set with fixed threshold on innovation
 Select largest inlier set as best one
 Properly update EKF using best inlier set
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% Confuse a random pair of current measurements
s1 = 0; s2= 0; % Indices to confused features
if(1)

ind = find(flist);
n_m = length(ind);
% Remove new features to make task more manageable
ranlist = find(flist & ~newfeature);
ind = ranlist;
n_m = length(ind);
% If more than 3 features measured, swap 2 of them
if (n_m > 3)

s = datasample(ind,2,'Replace',false);
s1 = s(1); 
s2 = s(2);
tmp = y(2*(s1-1)+1:2*s1,t);
y(2*(s1-1)+1:2*s1,t) = y(2*(s2-1)+1:2*s2,t);
y(2*(s2-1)+1:2*s2,t) = tmp;

end
end 75
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function mu_out = EKF_meas(mu,S,y,Q)

i=1;
dx = mu(3+2*(i-1)+1)-mu(1);
dy = mu(3+2*i)-mu(2);
rp = sqrt((dx)^2+(dy)^2);

Fi = zeros(5,length(mu));
Fi(1:3,1:3) = eye(3);
Fi(4:5,3+2*(i-1)+1:3+2*i) = eye(2);
Ht = [ -dx/rp -dy/rp 0 dx/rp dy/rp;

dy/rp^2 -dx/rp^2 -1 -dy/rp^2 dx/rp^2]*Fi;

I = y(2*(i-1)+1:2*i)-[rp;(atan2(dy,dx) - mu(3))];
I(2) = mod(I(2)+pi,2*pi)-pi;

% Measurement update
K = S*Ht'*inv(Ht*S*Ht'+Q);
mu_out = mu + K*I; 76
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% Measurement RANSAC

if (length(ranlist)>3)

NR = 10; 

ran_eps = 0.2;

best = [];

for k = 1:NR

inliers = [];

curS = datasample(ranlist,1);  % select seed set

curY =  y(2*(curS-1)+1:2*curS,t) % get measurements

curmu = EKF_meas(mu,S,curY,Qi); % update EKF 

for kk = 1:length(ranlist) % Calculate innovation and select inliers

i = ranlist(kk);

dx = curmu(3+2*(i-1)+1)-curmu(1);

dy = curmu(3+2*i)-curmu(2);

rp = sqrt((dx)^2+(dy)^2);

I = y(2*(i-1)+1:2*i,t)-[rp; (atan2(dy,dx) - mu(3))]; % Innovation

if (norm(I) < ran_eps)  % if below threshold

inliers = [inliers, i];

end

end

if (length(inliers)>length(best)) % Keep best inlier set

best = inliers;

end

end

flist = zeros(M,1);  % Update list of measurements to only include inliers

flist(best) = 1;

end
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 Linear Quadratic Regulators
 Lecture Slides
 Code
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 Scan Registration
 Lecture Slides
 Code
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 FastSLAM Review
 Lecture Slides
 Code
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 The poor man's laser scanner. In order to avoid the 
high cost of a full laser scanner, a group of students 
working on their fourth year design project would like to 
build an autonomous robot that relies on 6 IR rangers for 
mapping of an indoor environment.  The robot is aided by 
an indoor positioning system which provides x, y, ϴ at 1 Hz. 
They decide to use the lab robots for their project.  The 6 IR 
rangers are positioned on the front of the robot, with two 
pointing forward, spaced apart by 10 cm, two at the corners 
pointing at ± 45 and two at ± 90 as depicted below:        
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