
ME 597: AUTONOMOUS MOBILE ROBOTICS
REVIEW LECTURE

Prof. Steven Waslander

 Length
 3 questions similar to example problems
 Total worktime: hopefully <16 hours

 Depends mostly on programming skill
 Total available 24 hours

 Schedule
 Exam posted to Learn at 9:00 AM on Saturday,

December 13th, 2014
 Submit one PDF file and one code zip folder

electronically into exam dropbox by Sunday
December 14th, 2014 at 9:00 AM

 Questions: Email me directly at
stevenw@uwaterloo.ca. Note I’ll be asleep 12-
6AM 2

EXAM FORMAT

LIKELY EXAM TOPICS

3

 Probability basics
 Coordinate systems
 Motion models
 Linear Quadratic

Regulator and Tracking
 Nonlinear vehicle steering

control
 Measurement and inverse

measurement models
 Kalman Filter
 Extended Kalman Filter
 Particle Filter
 EKF Localization
 Particle Localization
 Occupancy grid mapping
 EKF SLAM

 FastSLAM 1.0
 RANSAC
 Scan Registration
 Potential fields
 Trajectory Rollout
 Wavefront
 Dijkstra, A* algorithm
 Visibility graphs
 Probabilistic Roadmaps
 Rapidly Expanding

Random Trees
 Nonlinear programming*

 Occupancy Grid SLAM*
 GraphSLAM*

* Possible, not likely.

UNLIKELY EXAM TOPICS

4

 Optimization Theory
 Optimization

Algorithms
 Dynamic

programming
 Aerial, legged or

tracked vehicles
 Feedback

linearization,
Backstepping, Sliding
mode control

 Contact sensors
 Vision

 Unscented Kalman
Filters

 Bug algorithms
 Generalized Voronoi

Decomposition
 Linear Programming
 Mixed Integer Linear

Program

FINAL EXAM

5

 No communication
with other human
beings during exam

 No communication
with other human
beings during exam

 No communication
with other human
beings during exam

 No communication
with other human
beings during exam

 No communication
with other human
beings during exam

 No communication
with other human
beings during exam

 3. A wheeled robot of neglible length is moving along
undulating terrain in a straight line, as defined below. The
current vehicle position is known exactly thanks to a very
accurate GPS sensor, its orientation due to a 2-axis
accelerometer measuring the ground reaction force, Fgr. The robot is controlled to maintain a constant horizontal
velocity of 0.5 m/s regardless of the slope of the terrain.
Equipped with a 5 Hz laser scanner pointing forward and
down along the direction of motion, your job is to create a
map of the terrain elevation as the robot moves.

 6

REVIEW QUESTIONS

 a) [5] Define the states of the vehicle and the
terrain and define the described motion in order
to simulate it. Define a two axis occupancy grid
(x,z) with 0.1m grid spacing.

7

REVIEW QUESTIONS

 a) [5] Define the states of the vehicle and the
terrain and define the described motion in order
to simulate it. Define a two axis occupancy grid
(x,z) with 0.1m grid spacing.

 Note: Use clear, consistent notation, work out
details on paper before coding.
 Don’t try and see (it will take much longer to debug

than to get it right the first time).

8

REVIEW QUESTIONS

 Forces don’t matter, this is a pure mapping
problem

 Redefine Ɵ relative to forward axis

 5 Hz update rate
 Grid [0,10] X [0,10] with 0.1 m cell size is 100 X 100
 Assume X moves one grid to the right each timestep and

takes new measurements. 9

REVIEW QUESTIONS

maxr

t

x

z

0.2dt 

 Simulation of robot motion can proceed without a
real motion model, since its state is assumed to
be known exactly from GPS and tilt sensor.
 z is 1 meter above ground.
 Ɵ is calculated based on local slope approximation (or

derivative).

10

REVIEW QUESTIONS

1 1

1 1

1

0.5 0.1
10(sin(1) sin(/ 2 0.3) sin(/ 3 0.5)) 1

tan

t t t

t t t t

t t
t

t t

x x dt x
z x x x

z z
x x



 

 



   
      

 
   

 b) [10] Create an inverse measurement model
that receives 16 measurements evenly spaced
between Ɵmin = 60° and Ɵmax = 15° down from the
forward horizontal with rmax = 5 m and returns the
probability of a grid being occupied by the
ground. The height of the scanner is 1m above
the ground. For the probability of ground, use
0.7, and the probability of not ground, use 0.3. Is
it possible to assume the ground is solid beyond a
valid range measurement, why or why not?

11

REVIEW QUESTIONS

 Measurement angles, with spacing of 3 degrees ((60-
15)/15), 16 measurements total.

12

REVIEW QUESTIONS

min
max

maxr

t

x

z

 min max3 / 2 3 / 2s      

0.1, 3    Or Bresenham

 Inverse Measurement Model
 Get range and bearing to each cell

 Find relevant range measurement for that cell
 Closest bearing of a measurement

13

REVIEW QUESTIONS

   2 2
1, 2,

i i i
x t y tr m x m x   

2,1
3,

1,

tan
i
y ti

ti
x t

m x
x

m x
   

   

 arg min i jk   

 What’s different?
 Only if max range is returned do we have no info

beyond a range measurement

 if

 else if

 else if

14

REVIEW QUESTIONS

max or | | / 2i s i s
kr r     

max and () / 2s s i s
k kr r r r   

i s
kr r

(|) 0.5i
tp m y 

(|) 0.7i
tp m y 

(|) 0.3i
tp m y 

 Example Inverse Measurement Model

15

REVIEW QUESTION

Low
Prob

No
info

High
Prob

 Is it possible to assume solid ground beyond valid
range measurements?
 Not absolutely, but it is a reasonable assumption if

we leave some uncertainty in that region
 As defined above, we have assumed that ground is

equally probable beyond a valid range measurement
as at the valid range measurement.

 We could also adapt this to have diminishing
certainty with increasing distance beyond
measurement range

16

REVIEW QUESTIONS

()(|) 0.7 0.2(1)
i s

kr ri
tp m y e   

 Example Inverse Measurement Model

17

REVIEW QUESTION

Low
Prob

No
info

Higher
Prob

 Equally valid to use Bresenham version of sensor
model
 Adapt update regions along line, and proceed to end

of map
 if

 if and

or

18

REVIEW QUESTIONS

 s i
kr r

(|) 0.7i
tp m y 

(|) 0.3i
tp m y 

max
i sr r s i

kr r

()(|) 0.7 0.2(1)
i s

kr ri
tp m y e   

 c) [10] Develop a simulation with the following terrain
profile, where h(x) is the height of the ground at position x
in [0,10].

h(x) = 10(sin(x+1) + sin(x/2+.3) + sin(x/3+.5))

Simulate for a 20 second journey at a constant horizontal
velocity of 0.5 m/s, with the scanner returning
measurement sets at 5 Hz.

19

REVIEW QUESTIONS

 So now we use our full mapping simulation to
generate the results. Code is available, but
changes were needed to
 Getranges(), to account for 0.1m cell spacing
 Inversescanner(), to account for changes in scanner

model when measuring the ground
 Mapping.m, to change vehicle motion and sensor

height, environment map, and x, z axis configuration.

20

REVIEW QUESTIONS

Modify getranges() to take cell size alpha (could also convert to
Bresenham
…
for i=1:length(meas_phi) for j=1:round(rmax/alpha)

% Determine the x,z range to the cell
xi = x+alpha*j*cos(th+meas_phi(i));
zi = z+alpha*j*sin(th+meas_phi(i));
% Determine cell coordinates
ix = round(xi/alpha);
iz = round(zi/alpha);

% If not in the map, set measurement there and stop going further
% If not in the map, set measurement invalid and stop going further
if (ix<=1||ix>=M||iz<=1||iz>=N)

meas_r(i) = rmax; % alpha*j;
break;

% If in the map but hitting an obstacle, set measurement range and
% stop going further
elseif (map(ix,iz))

meas_r(i) = alpha*j;
break;

end
end

21

REVIEW QUESTIONS

Change inversescanner() per model
for i = 1:M

for j = 1:N
% Find range and bearing to the current cell
r = sqrt((i*alpha-x)^2+(j*alpha-z)^2);
phi = mod(atan2(j*alpha-z,i*alpha-x)-theta,2*pi);

% Find the applicable range measurement
[meas_cur,k] = min(abs(phi-meas_phi));
phi_s(i,j) = phi;

% If behind out of range measurement, or outside of field
% of view, no new information is available
if ((meas_r(k) == rmax) && (r - rmax >= -alpha/2)) || (abs(phi-

meas_phi(k))>beta/2)
m(i,j) = 0.5;

% If the range measurement was before this cell, likely to be an object
elseif ((r - meas_r(k) >= -alpha/2))

m(i,j) = 0.7 - 0.2*(1-exp(-(r-meas_r(k))));
% If the cell is in front of the range measurement, likely to be empty
else

m(i,j) = 0.3;
end

end

22

REVIEW QUESTIONS

% Robot motion defined by terrain

x(:,t) = [xmap(t); zmap(t)+1; thmap(t)];

% Generate a measurement data set
meas_r = getranges(map,x(:,t),meas_phi,rmax,alpha);

%% Map update
% Get inverse measurement model
invmod = inversescanner(N,N,x(1,t),x(2,t),x(3,t),meas_phi,meas_r,

rmax,alpha,beta);

23

REVIEW QUESTIONS

 Didn’t ask for very specific graphs, will do so on
the final.

24

REVIEW QUESTIONS

 And with the decay in probability beyond range
measurement.

25

REVIEW QUESTIONS

 Finally, this whole exercise indicates some clear
benefits to a different laser configuration

26

REVIEW QUESTIONS

 Can also easily test the assumption that laser is
an ever expanding beam
 Reduce to 5 measurements, but maintain 3 degree

cone

27

REVIEW QUESTIONS

 In this problem, we will develop a reactive motion planner for 2D motion of ground
vehicle for navigation in a gallery. The robot is required to lead a tour through the
gallery and arrive at the various points of interest, while avoiding sculptures, chairs,
walls etc. en route. The environment is most easily represented as an occupancy grid,
which is defined by the file ”gallery.m”, available on ACE and is depicted in Figure 2.
The robot is the four swedish wheel variety as depicted in Figure 1, and so can be
described with linear dynamics (note: speakers are located on all sides of the robot
guide, so that heading is irrelevant and can be maintained at a constant value).

 a) Define a motion model for the robot with four 90 swedish wheels arranged as in
Figure 1.

28

REVIEW QUESTIONS

 Again, clearly define variables, coordinates and
model

29

REVIEW QUESTIONS

 b) Develop a potential field planner by defining
attractive potentials for each of the targets locations
on the tour, and repulsive potentials for all of the
obstacles in the environment. Should all the
attractive potentials be active at every point in time?
How would you handle the sequential nature of the
tour? How would you translate the steepest descent
direction of the potential into control commands for
the motion model defined in part a)? What happens if
the robot gets stuck in a local minimum?

 Note: Solution outlined below, be sure to write out
equations used for exam. 30

REVIEW QUESTIONS

31

REVIEW QUESTIONS

 The map in this question is harder than the ones
presented in class, with nonconvex obstacles and
lots of difficult passages
 Likely a lot of local minima

 The active potentials should only be active one at
a time
 Add a logic layer to handle the sequence of waypoints

to visit.
 While not at final point

 If within 1m of current point
 Set attractive potential to next point

 End
 End

 The repulsive potentials will be as in class, with
some exceptions
 Since the boundary is complex, it can be converted to

a set of polygon obstacles
 Each interior obstacle can be converted into discrete

1X1m obstacle chunks to facilitate shortest distance
calculations on irregular boundaries.

 To extract a motion command from the potential
field, just take gradient components in x and y as
desired accelerations

32

REVIEW QUESTIONS

 c) Simulate a trajectory through the environment
based on the potential field method. Be sure to pause
for 5 seconds at each target location. Is the vehicle
able to exactly achieve all of the target locations?
Present a plot of the vehicle trajectory through the
environment, and of the potential field that results for
the first target location and obstacles.

33

REVIEW QUESTIONS

 Take potential field code
 Modify attractive potential selection
 Discretize obstacles
 Modify collision checks for discrete square obstacles

34

REVIEW QUESTIONS

 Potential Field for first leg of journey to waypoint
2.

35

REVIEW QUESTIONS

36

REVIEW QUESTIONS

 Full trajectory – with limitations (added a timeout)

 Repeat the above problem, but use the wavefront
algorithm instead of the potential field method.

 a) Define the algorithm used to create a wavefront
emanating from the current target location.

 b) Given a wavefront based potential field, define the
algorithm used to select a trajectory to the current
target location.

 c) Implement the algorithm for the gallery and target
locations defined in the file ”gallery.m” available on
LEARN. Present the trajectory followed for the entire
tour of the gallery, and the wavefront potential
generated for the first target location. 37

REVIEW PROBLEMS

 Solution
 Take wavefront code and apply in place of potential

field

38

REVIEW QUESTIONS

Particle Filters:
A surveillance aircraft is travelling at a fixed altitude and
airspeed, but is affected by unknown constant winds. There are
four visual landmarks the aircraft can use to localize its position,
and it receives only bearing information from each of the four
landmarks located at {(−10, 0), (10, 0), (10, 20), (−10, 20)}. The
aircraft motion can be modelled identically to a two wheeled
robot, with the exception of sideslip due to wind.

39

REVIEW QUESTIONS

Let the state vector be

where X, Y are the horizontal position of the aircraft, θ
is its heading and vx,w , vy,w are the horizontal
components of the wind velocity.
The kinematic model of motion is,

40

REVIEW QUESTIONS

1, 1 3, 1 4, 1

2, 1 3, 1 5, 1

3, 1

4, 1

5, 1

(cos())
(sin())

t t t

t t t

tt

t

t

x v x x dt
x v x x dt

x dtx
x
x



  

  







  
   

  
 
 
  

, ,[]T
t x w y wXx Y v v

 a) [5] Define a measurement model for bearings
only measurement of all four landmarks.

41

REVIEW QUESTIONS

1 1

1

1 2

2

1 3

3

1 4

4

tan

tan

tan

tan

t t

y
x

y
x

y
y
x

y
x






















  
  

  
  
  
         
 

  
    

1,

2,

i t i

i t i

x x x
y x y




 

 

No mention of
altitude above
ground, assume
measurements are
projected onto x,y
plane to reveal a 2D
bearing only. If not
stated, ask me, or
state your
assumption.

~ (0,)t N R

 b) [5] Define motion disturbances and
measurement noise for both models.

42

REVIEW QUESTIONS

2

2

2

2

0 0 0
0 0 0
0 0 0
0 0 0

b

b

b

b

R







 
 
 
 
 
 

2

2

2

2

2

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
X

Y

X

Y

V

V

Q 









 
 
 
 
 
 
 
 

 c) [15] Develop a particle filter for aircraft
localization and wind speed estimation. Present
all necessary variables and equations, and define
each step in the algorithm.

 No changes, direct implementation of existing
particle filter.

43

REVIEW QUESTIONS

 d) [15] Implement the particle filter with in
simulation with dt = 0.1 for an aircraft starting
at the origin at altitude 25 m, with zero heading,
with constant inputs of v = 5m/s, ω = 0.3rad/s,
and with a constant windspeed of vw= (−0.5, 2).
Generate the following plots
 i) the true state, the measurements and the particle

set (only at 1 second intervals for the particle set)
 ii) the estimate of the wind velocity over time.

44

REVIEW QUESTIONS

 Code differences required
 New motion model with five states

 Initialization of simulation
 Initialization of particles
 Disturbance covariance
 Motion update with wind
 Particle prediction update

 New measurement model with only bearing
 Initialization of measurements
 Noise covariance
 Measurement simulation
 Weighting – normpdf

 Clean up plotting to generate required output
45

REVIEW QUESTIONS

 Recall the Particle Filter Algorithm (simplified)
1. For each particle in

1. Propagate sample forward using motion model (sampling)

2. Calculate weight (importance)

3. Store in interim particle set

2. For j = 1 to D
1. Draw index i with probability (resampling)

1. Add to final particle set
46

REVIEW QUESTIONS

1tS 

[] []
1~ (| ,)i i

t t t tx p x x u

[] [](|)i i
t t tw p y x

[]i
tw

[]' ' { }i
t t tS S s 

[]{ }i
t t tS S s 

 Particle filter code

%% Particle filter estimation
for dd=1:D % for each particle

e = RE*sqrt(Re)*randn(n,1); % Generate motion disturbance
Xp(:,dd) = [X(1,dd)+(u(1,t)*cos(X(3,dd))+X(4,dd))*dt;

X(2,dd)+(u(1,t)*sin(X(3,dd))+X(5,dd))*dt;
X(3,dd)+u(2,t)*dt;
X(4,dd);
X(5,dd)] + e; % propagate dynamics

% Calculate expected measurements and weights
hXp = [atan2(map(:,2)-Xp(2,dd),map(:,1)-Xp(1,dd))-Xp(3,dd)] + d;
w(dd) = mvnpdf(y(:,t),hXp,Qm);

end
W = cumsum(w); % Switch to cumulative distribution
for dd=1:D % Perform importance sampling

seed = max(W)*rand(1); % Draw sample uniformly
X(:,dd) = Xp(:,find(W>seed,1)); % Keep corresponding particle

end
muParticle = mean(X'); % Calculate mean if needed
SParticle = var(X'); 47

REVIEW QUESTIONS

48

REVIEW QUESTIONS

 e) [5] How many particles did you choose to use
in your particle filter implementation and why?
What are the advantages and drawbacks of using
more or less particles?

 I used 300 particles, 100 caused deprivation
issues that crash the code when all weights are
zero, and 1000 took too long.

49

REVIEW QUESTIONS

 Nonlinear programming
Collision avoidance for aircraft using nonlinear programming.
In this problem, your task will be to formulate an optimal path planner
that resolves conflicts between multiple aircraft trajectories in the 2D
plane using a receding horizon nonlinear program. We will assume that
all vehicle position information is accurate and is known centrally,
avoiding the need to perform vehicle state estimation or to coordinate
inter-vehicle communication. The system of interest will involve n
vehicles with trajectories defined in discrete time steps of 10 seconds, as
follows,

where the superscript d,i denotes the desired trajectory for vehicle i,
and the subscript 1,t denotes the state variable 1 at time t. The
trajectory is define for T timesteps into the future, and can be extended
indefinitely in a straight line at constant speed if necessary.

50

REVIEW QUESTIONS

, ,
1,0 2,0

, ,
1,1 2,1,

, ,
1, 1,

d i d i

d i d i
d i

d i d i
T T

x x
x x

x

x x

 
 
 
 
 
 

 

The receding horizon to be used will be denoted . The vehicles
must maintain a minimum separation of km. The aircraft
have minimum and maximum speed requirements of
and maximum turn rates of

a) Define a motion model for the aircraft, using the standard
2D two-wheeled robot model, and include additive Gaussian
disturbances for simulation purposes only, with covariance
values of

Standard two wheel model, from motion model slides

51

REVIEW QUESTIONS

 min max,v v v
max| | 

0.1, 0.01 xx yy      

1, 1, 1 1, 3, 1

2, 1 2, 1 1, 3, 1

3, 3, 1 2,

cos
(, ,) sin

t t t t

t t t t t t t t

t t t

x x u x dt
x g x u x u x dt
x x u dt

 
 

  



   
         

      

0.1 0 0
0 0.1 0
0 0 0.01

R
 
 
 
  

b) Define all of the equality and inequality constraints
that result from the motion model (ignoring
disturbances), the collision avoidance constraints and
input bounds for a receding horizon length .

52

REVIEW QUESTIONS

1, 1, 1 1, 3, 1

2, 1 2, 1 1, 3, 1

3, 3, 1 2,

cos
(, ,) sin

t t t t

t t t t t t t t

t t t

x x u x dt
x g x u x u x dt
x x u dt

 
 

  



   
         

      

Motion constraints, nonlinear equality

53

REVIEW QUESTIONS

,2 max

,1 max

,1 min

for all i,t

i
t

i
t

i
t

u

u v

u v







max

for all i,t

i
tx x

    2
,1:2 ,1:2 ,1:2 ,1:2

for all i,j, t

Ti j i j
t t t t sx x x x d  

Input bounds State bounds
Linear equality

Collision Avoidance constraints
Nonlinear inequality

0 .
for all i

ix const

Expressing the constraints in our usual notation
(at each timestep, for each vehicle or vehicle pair

c) Define a cost function that penalizes quadratic
deviation from the desired trajectory at each
timestep. Define a separate cost that penalizes the
turn rate quadratically and combine the two
linearly with weighting factors for the first term
and for the second.

54

REVIEW QUESTIONS

   

 

2 2, ,
,1 ,1 ,2 ,2

1 1

2

,2
1 1

() (1) ()x u
T M

i d i i d i
x t t t t

t i
T M

i
u t

t i

f f x f u

f x x x x

f u

 

 

 

  

   







d) Formulate the full nonlinear program for a single
time interval, then define a receding horizon algorithm
that solves this program at each time step. Explain how
the nonlinear program is modified at each successive
time step.

55

REVIEW QUESTIONS

   

,

,2 max

,1 max

,1 min

max

0

2
,1:2 ,1:2 ,1:2 ,1:2

1, 1, 1 1, 3, 1

2, 1 2, 1 1, 3, 1

3, 3, 1 2,

min (,)

. .

.

cos
(, ,) sin

x u

i
t

i
t

i
t

i
t

i

Ti j i j
t t t t s

t t t t

t t t t t t t

t t t

f x u

u

u v

u v

s t x x

x const

x x x x d

x x u x dt
x g x u x u x dt
x x u dt




 

  













  

   
      
      

t
 


e) Implement the single stage nonlinear program for the
following problem parameters.

The trajectories are a result of the vehicles flying at 100
m/s with constant heading, traveling 1 km every time
step. Provide a plot of the desired and optimal
trajectories for both vehicles. 56

REVIEW QUESTIONS

,1 ,2 ,3

max

0 0 3 3 1 3
3

1 0 3 2 0 2.5
3

2 0 3 1 1 2
10 s

km km km3 0 3 0 2 1.5
[50,150] m/s

4 0 3 0 3 1
0.03 rad/s

5 0 3 1 4 0.5
2 km

6 0 3 2 5 0

r

d d d

s

n
T
dt

x x x
v

d


                 
     

              
     

            
          

 To code up part e), the following steps are needed.
 Grab a copy of the receding horizon control code, along with the cost and

constraint functions from the Nonlinear Programming example. Run it to
make sure it works.

 In the main nonlinear programming file, rewrite the desired trajectories,
and add a variable for the number of vehicles.

 Remove anything to do with obstacles. There are none in this problem.
 Redefine the lower and upper bounds, and make sure to define a consistent

optimization vector (x = [x1 u1, x2 u2,…], where each variable runs
through each state or input, then through each timestep, then through
each vehicle).

 Modify the initial feasible solution
 Change the way the dynamics are propagated after the optimization is

complete
 Rename the results properly for plotting.
 In the cost function file, redefine the cost function per the required form in

part c). Make sure the necessary global variables are declared here and in
the main file.

 In the constraint function file, define the dynamics for all vehicles
 Also in the constraint function file, add in the collision avoidance

constraints between each pair of vehicles

 You should now be able to run your code for the collision avoidance
problem. Some debugging of constraints and costs and lower and
upper bounds may be required. Check each one as you go along.

57

REVIEW QUESTIONS

 This is the hard part of this question, putting all of
the constraints in the right form. There are many
matrices to create, and they must all be done over all
time steps. Use variable bounds where you can, and
the rest you must define as equality and inequality
constraints. Note that nonlinear constraints must all
be coded in the constraints function.

58

REVIEW QUESTIONS

1 1 1 1
1 1 1 1

TM M M M
T T T Tx x u x u x u x u     

Full optimization vector for M vehicles and T timesteps

Need problem in the form
X = fmincon(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON)

% Linear Inequality Constraints (none)

A = [];

B = [];

% Linear Equality Constraints (the initial positions of the vehicles)

Aeq = zeros(nx*nv,NT);

for i = 1:nv

% Row index increments by nx for each new vehicle,

% Column index increments n to select correct values of optimization

% vector

Aeq((i-1)*nx+1:i*nx, (i-1)*n +1:(i-1)*n+nx) = eye(nx);

% Rows of Beq match rows of Aeq

Beq((i-1)*nx+1:i*nx) = p0(:,i);

end

% State and input bounds, (if no bounds are given, still a good idea to

% include them but set them outside the problem scope).

LB = -500*ones(NT,1); % Lower bounds on all variables

LB(4:n:end,1) = 0.050; % Lower bound on velocity (in km/s)

LB(5:n:end,1) = -0.03; % Lower bound on turn rate (in rad/s)

UB = 500*ones(NT,1); % Upper bounds on all variables

UB(4:n:end,1) = 0.150; % Upper bound on velocity (in km/s)

UB(5:n:end,1) = 0.03; % Upper bound on turn rate (in rad/s)
59

REVIEW QUESTIONS

% Dynamics, nonlinear equality constraints, nv vehicles times nx states
% times Tr periods (from 0 to 1, 1 to 2,... Tr to Tr+1)

Ceq = zeros(nv*nx*Tr,1);
k = 1; % Increment constraint evaluations
for t = 1:Tr

for i = 1:nv
xprev = x(N*(t-1)+n*(i-1)+1:N*(t-1)+n*i); % Previous state and inputs
xcur = x(N*(t)+n*(i-1)+1:N*(t)+n*i); % Current state and inputs
% Dynamic constraints on the three states
Ceq(k:k+2) = xcur(1:3)-xprev(1:3)-dt*[cos(xprev(3))*xprev(4);

sin(xprev(3))*xprev(4);
xprev(5)];

k = k+3;
end

end

60

REVIEW QUESTIONS

% Collision Avoidance inequality constraints
% There are nv(nv-1)/2 pairs of vehicles and Tr time steps to
% evaluate (do not include the initial positions, as they are
% already fixed).

C = zeros(nv*(nv-1)/2*Tr,1);
k = 1; % Increment constraint evaluations
for t = 2:Tr+1 % For each time step after initial

for i = 1:nv % For each vehicle i
for j = i+1:nv % For each other vehicle j greater than i

xcuri = x(N*(t-1)+n*(i-1)+1:N*(t-1)+n*(i-1)+2); % Position i
xcurj = x(N*(t-1)+n*(j-1)+1:N*(t-1)+n*(j-1)+2); % Position j
C(k) = ds - norm(xcuri-xcurj); % min distance constraint
k = k +1;

end
end

end

61

REVIEW PROBLEMS

%% Cost Function
f = 0;
for t = 2:Tr+1 % For each timestep after the initial

for i = 1:nv % For each vehicle

% current vehicle state and inputs
xcur = x(N*(t-1)+n*(i-1)+1:N*(t-1)+n*(i-1)+n);

% Position error cost, quadratic distance from desired position
f = f + beta*((xd(1,t-1,i) - xcur(1))^2+ (xd(2,t-1,i)- xcur(2))^2);

% Turn rate control input cost, quadratic sum of turn rate inputs
f = f + (1-beta)*xcur(5)^2;

end
end

62

REVIEW QUESTIONS

 Running the optimization

63

REVIEW QUESTIONS

% Solve nonlinear program
options = optimset('algorithm', 'interior-point','maxfunevals',50000);

% Limit how long your optimization can run for
tic; % used to time the optimization, starts the timer

% The actual optimization call should not change if everything is
% defined correctly above

[X,FVAL,EXITFLAG,OUTPUT,LAMBDA] = fmincon(@(x), cost(x), x0, A, B,
Aeq, Beq, LB, UB, @(x) constraints(x), options);

toc; % returns the elapsed time

f) Demonstrate the full receding horizon algorithm with 3 vehicles, for a
receding horizon Tr = 5 time steps, for the first 5 time steps of a full
simulation of T = 15. Select any configuration of straight line trajectories
you wish. Provide the desired trajectories and the optimal solution at
each timestep for all vehicles.

 This involves modifying the code in two ways, and hopefully you
coded the first changes in such a way that these modifications are
easy and correct.
 First, increase the number of timestep to more than 1.
 Next, make sure that all of the matrices and nonlinear cost and constraint

equations are being defined properly. If you are happy with all the
changes, run the expanded problem for one time step and make sure the
solutions make sense.

 Then update the initial conditions and extend the feasible solution and
create the receding horizon control we are interested in

 If you coded everything correctly in the previous example, this should
now run the code for multiple time step, correctly updating the initial
position of the vehicles after each optimization. Check that the
solutions you get make sense and generate the necessary trajectories.

64

REVIEW QUESTIONS

g) What are the run times for a single stage optimization with
2 vehicles and T = 3,4,5? Be sure to have the collision
avoidance constraint be active during the calculation window.
How many optimization variables are in each of the
problems? What is the theoretical growth in computational
complexity for nonlinear programs and how do your
simulation results compare? Plot or tabulate the results.

65

REVIEW QUESTIONS

T Computation Time
(5 timesteps)

3 0.56
4 1.10
5 1.67

 Random Sample Consensus (RANSAC)
 Given a set of measurements, some of which are

wrong, find the good ones
 Can be done by looking at agreement between sets of

measurements

66

REVIEW QUESTIONS

D

B
A

C

Localization:
A,B,C,D known
Robot pose unknown
Bearing and range to features
D mistakenly assigned to EA B

C

E

E

One bad correspondence

 Random Sample Consensus (RANSAC)
 RANSAC picks a subset of measurements: seed
 Then solves for robot pose
 Then finds inlier set: those measurements that agree

with pose
 Repeat and keep largest inlier set to compute

solution

67

REVIEW QUESTIONS

D

B
A

CA B
C

E

E

 Random Sample Consensus (RANSAC)
 RANSAC picks a subset of measurements: seed
 Then solves for robot pose
 Then finds inlier set: those measurements that agree

with pose
 Repeat and keep largest inlier set to compute

solution

67

REVIEW QUESTIONS

D

B
A

CA B
C

E

E
Seed
set

 Random Sample Consensus (RANSAC)
 RANSAC picks a subset of measurements: seed
 Then solves for robot pose
 Then finds inlier set: those measurements that agree

with pose
 Repeat and keep largest inlier set to compute

solution

67

REVIEW QUESTIONS

D

B
A

CA B
C

E

E
Seed
set

 Random Sample Consensus (RANSAC)
 RANSAC picks a subset of measurements: seed
 Then solves for robot pose
 Then finds inlier set: those measurements that agree

with pose
 Repeat and keep largest inlier set to compute

solution

67

REVIEW QUESTIONS

D

B
A

CA B
C

E

E
Seed
set

 Random Sample Consensus (RANSAC)
 RANSAC picks a subset of measurements: seed
 Then solves for robot pose
 Then finds inlier set: those measurements that agree

with pose
 Repeat and keep largest inlier set to compute

solution

67

REVIEW QUESTIONS

D

B
A

CA B
C

E

E

 Random Sample Consensus (RANSAC)
 RANSAC picks a subset of measurements: seed
 Then solves for robot pose
 Then finds inlier set: those measurements that agree

with pose
 Repeat and keep largest inlier set to compute

solution

67

REVIEW QUESTIONS

D

B
A

CA B
C

E

E

 RANSAC Summary
 While not out of time

 Pick a small subset of measurement correspondences

 Perform temporary measurement update with this subset

 Find all features that agree with current estimate to within
a fixed threshold (identify inlier set)

 Select largest inlier set, reject all outliers

 Recompute solution using the inlier set
73

REVIEW QUESTIONS

k
ty y

   k k k kI y y h    

(,)k k
tEKF y 

* max k

k
I I

*(,)t tEKF I 

 RANSAC Example – EKF SLAM
 EKF SLAM with more feature

 On average about 8 per timestep
 Two of the measurements are selected and their

indices are swapped
 Measurements to feature i attributed to feature j

 RANSAC uses EKF SLAM measurement update with
only a single feature measurement
 Generate new state hypothesis
 Create inlier set with fixed threshold on innovation
 Select largest inlier set as best one
 Properly update EKF using best inlier set

74

REVIEW PROBLEMS

% Confuse a random pair of current measurements
s1 = 0; s2= 0; % Indices to confused features
if(1)

ind = find(flist);
n_m = length(ind);
% Remove new features to make task more manageable
ranlist = find(flist & ~newfeature);
ind = ranlist;
n_m = length(ind);
% If more than 3 features measured, swap 2 of them
if (n_m > 3)

s = datasample(ind,2,'Replace',false);
s1 = s(1);
s2 = s(2);
tmp = y(2*(s1-1)+1:2*s1,t);
y(2*(s1-1)+1:2*s1,t) = y(2*(s2-1)+1:2*s2,t);
y(2*(s2-1)+1:2*s2,t) = tmp;

end
end 75

REVIEW PROBLEMS

function mu_out = EKF_meas(mu,S,y,Q)

i=1;
dx = mu(3+2*(i-1)+1)-mu(1);
dy = mu(3+2*i)-mu(2);
rp = sqrt((dx)^2+(dy)^2);

Fi = zeros(5,length(mu));
Fi(1:3,1:3) = eye(3);
Fi(4:5,3+2*(i-1)+1:3+2*i) = eye(2);
Ht = [-dx/rp -dy/rp 0 dx/rp dy/rp;

dy/rp^2 -dx/rp^2 -1 -dy/rp^2 dx/rp^2]*Fi;

I = y(2*(i-1)+1:2*i)-[rp;(atan2(dy,dx) - mu(3))];
I(2) = mod(I(2)+pi,2*pi)-pi;

% Measurement update
K = S*Ht'*inv(Ht*S*Ht'+Q);
mu_out = mu + K*I; 76

REVIEW PROBLEMS

% Measurement RANSAC

if (length(ranlist)>3)

NR = 10;

ran_eps = 0.2;

best = [];

for k = 1:NR

inliers = [];

curS = datasample(ranlist,1); % select seed set

curY = y(2*(curS-1)+1:2*curS,t) % get measurements

curmu = EKF_meas(mu,S,curY,Qi); % update EKF

for kk = 1:length(ranlist) % Calculate innovation and select inliers

i = ranlist(kk);

dx = curmu(3+2*(i-1)+1)-curmu(1);

dy = curmu(3+2*i)-curmu(2);

rp = sqrt((dx)^2+(dy)^2);

I = y(2*(i-1)+1:2*i,t)-[rp; (atan2(dy,dx) - mu(3))]; % Innovation

if (norm(I) < ran_eps) % if below threshold

inliers = [inliers, i];

end

end

if (length(inliers)>length(best)) % Keep best inlier set

best = inliers;

end

end

flist = zeros(M,1); % Update list of measurements to only include inliers

flist(best) = 1;

end

77

REVIEW PROBLEMS

 Linear Quadratic Regulators
 Lecture Slides
 Code

78

REVIEW QUESTIONS

 Scan Registration
 Lecture Slides
 Code

79

REVIEW QUESTIONS

 FastSLAM Review
 Lecture Slides
 Code

80

REVIEW

 The poor man's laser scanner. In order to avoid the
high cost of a full laser scanner, a group of students
working on their fourth year design project would like to
build an autonomous robot that relies on 6 IR rangers for
mapping of an indoor environment. The robot is aided by
an indoor positioning system which provides x, y, ϴ at 1 Hz.
They decide to use the lab robots for their project. The 6 IR
rangers are positioned on the front of the robot, with two
pointing forward, spaced apart by 10 cm, two at the corners
pointing at ± 45 and two at ± 90 as depicted below:

81

REVIEW QUESTIONS

